
LabVIEW NXG
Application
Collaboration

2025-03-20

Contents Contents
Collaborating on Web Applications . 3

Package Dependencies . 3
Sharing a Project and Including Package Dependencies . 4
Capturing the Package Dependencies of a Project . 4
Resolving Missing or Mismatched Package Dependencies on a Development
System . 5

Recommendations for Developing a Project Stored in a Source Code Control
Repository . 6

Source Code Control Models . 9
Recommendations for Interacting with a Centralized Source Code Control System
while Developing a Project . 10
Recommendations for Developing a Project in a Distributed Source Code Control
System . 11
Merging Files and Resolving Conflicts . 13

Code Snippets . 14
Creating a Code Snippet . 14
Adding a Code Snippet to the Diagram . 14

LabVIEW NXG Application Collaboration

2 ni.com

Collaborating on Web Applications

Learn about tools that help your team streamline interactions with project files during
software development.

Consider using one of the following tools when working on a project with a team of
developers.
These tools are designed to support developer efficiency and preserve the integrity of
your code base.

• Package Dependencies Document—Store a list of packages a project uses so you
can set up a development system.

• Source Code Control—Back up and manage versions of your source files.

Package Dependencies

In projects, a package dependency is a package installed on the development
system and used in the project.

The Package Dependencies document (.sls) stores a list of packages a project
uses so you can set up a development system with the required packages. With the
Package Dependencies document, you can do the following:

• Share a project that allows a recipient to easily set up their development system
with the package dependencies of the project.

• Create a project that serves as a template. Other developers can use the template
project to set up their development system and begin development of the project.

• Update the list of package dependencies any time you add a package dependency
to the project. Share the updated list with other developers so they can see new
package dependencies you add to the project.

The Package Dependencies document is a Salt State file (.sls). For more information
about Salt States, visit the SaltStack Documentation website and search for the
SALT.STATE.PKG state module.

LabVIEW NXG Application Collaboration

© National Instruments 3

Related tasks:

• Sharing a Project and Including Package Dependencies

Sharing a Project and Including Package Dependencies

Use the Package Dependencies document to store a list of packages a project uses so
you can set up a development system with the required packages.

1. Create a project that uses NI software, drivers, or third-party packages.
2. Capture package dependencies on the source system—Identify the packages a

project requires and store a list of those packages in the Package Dependencies
document.

3. Copy the project folder and save it on the target system.
4. Resolve package dependencies on the target system—Set up a development

system by installing packages listed in the Package Dependencies document.

Capturing the Package Dependencies of a Project

Identify the packages a project requires and store a list of those packages in the
Package Dependencies document.

1. On the Project Files tab, right-click the project and select Capture package
dependencies.
The Package Dependencies document opens, scans the project, and displays a list
of packages the project requires.

2. (Optional) Make changes to the project, return to the Package Dependencies
document, and click Recapture dependencies.

3. Click File » Save all.

After you capture the package dependencies of a project, copy the project folder, save
it on another development system, and use the Package Dependencies document to

Note When you capture package dependencies, you must have the
required packages installed on the source system and the code in the
project must be in working condition.

LabVIEW NXG Application Collaboration

4 ni.com

https://www.ni.com/docs/csh?topicname=capture-package-dependencies.html
https://www.ni.com/docs/csh?topicname=resolve-package-dependencies.html

resolve package dependencies on that system.

Related tasks:

• Sharing a Project and Including Package Dependencies
• Resolving Missing or Mismatched Package Dependencies on a Development

System

Resolving Missing or Mismatched Package Dependencies on a
Development System

Set up a development system by installing packages listed in the Package
Dependencies document.

Before you can resolve package dependencies on a development system, copy the
project folder from the system on which the project was originally developed, then
save the folder on the target system.

1. Launch the project, then open the Package Dependencies document.
When you open the Package Dependencies document, it searches the system to
identify missing or mismatched packages for the project.

2. Click Resolve.
The Package Dependencies document displays checkboxes next to the missing or
mismatched packages. You can review the packages before installing them with NI
Package Manager. By default, the Package Dependencies document selects all
missing or mismatched packages.

3. Click Resolve selected.
The Package Dependencies document launches NI Package Manager.

4. Follow the prompts in NI Package Manager to install the packages you selected.
Depending on the type of package you install, you may need to restart G Web
Development Software or the development system.

Related tasks:

Note NI Package Manager does not support downgrading packages.

LabVIEW NXG Application Collaboration

© National Instruments 5

• Sharing a Project and Including Package Dependencies
• Capturing the Package Dependencies of a Project

Recommendations for Developing a Project Stored in a
Source Code Control Repository

Because graphical code interacts differently with source code control systems than
text-based code does, follow NI's recommendations for developing a project stored in
a source code control (SCC) repository.

Recommendation Details

Create modular code within the project.

Modularity is a software design technique
where units of code are collected together into
logical and functional groups called modules.

Modularity reduces the likelihood that changes
to one module of code will introduce
unexpected changes to another module of code.

To build modularity into your project, create VIs
and subVIs that handle specific, limited tasks.
Use applications and libraries (.gcomp) when
you want to group files together to perform a
cohesive set of tasks.

In team-based development environments,
modular code helps create logical divisions of
work between developers.

Avoid making simultaneous changes in a VI. The likelihood of broken code increases when
multiple developers modify the same VI

Note The following information uses examples from Subversion (SVN) and
Git. However, you can apply these concepts when interacting with any source
code control system.

LabVIEW NXG Application Collaboration

6 ni.com

Recommendation Details

simultaneously. Merge conflicts are possible
when developers submit conflicting changes in a
VI.

If you use modular design techniques in the
project, you can assign modules to individual
developers on your team to reduce the
likelihood that multiple developers will modify a
VI simultaneously.

Some source code control systems allow you to
lock files when you check them out. Use this
feature to prevent others from modifying a VI
while you have it checked out.

If you cannot avoid simultaneous development
of VIs in a project, use NI Compare to view
differences between two versions of a VI, then
manually combine the differences between each
version.

If you make changes to source files in the
project, communicate with other developers on
your team.

Modifications you make to source files in the
project can produce changes to the project file
as well as other files. Communicating with your
team when you make changes helps other
developers to quickly identify conflicts with their
work.

Using a collaboration tool can help streamline
communication on a development team.

Some collaboration tools, as well as some
source code control systems, can auto-generate
emails when changes to the repository occur.

Configure the project directory in the centralized
repository to ignore submissions to the
following project sub-folders:

Changes within these sub-directories do not
affect the functionality of source code in the
project.

LabVIEW NXG Application Collaboration

© National Instruments 7

https://www.ni.com/docs/bundle/labview-nxg-applicaton-collaboration/page/

Recommendation Details

• Builds
• .cache

In SVN, apply the svn:ignore property to the
sub-directories.

In Git, list the sub-directories in the
.gitignore file.

Perform code reviews before submitting code to
the central repository.

Code reviews improve the quality of the code in
your project and preserve the integrity of your
source code as it changes during project
development.

Consider implementing a tiered review
framework on your development team. For
example:

• Peer reviews verify that the submission
does not contain defects.

• Owner reviews verify that the submission
adheres to architectural guidelines.

As a code reviewer, you can use NI Compare to
compare two versions of a project file or VI.

Create a Package Dependencies (.sls)
document and keep it up to date during project
development.

When you include a Package Dependencies
(.sls) document in the project, developers can
update this file as they create code, then other
developers can use it to keep their development
systems in sync.

For VIs, disable the auto-merge utility in your
source code control system.

The underlying source of a VI file is XML-based
text. When merging two versions of a VI, the
auto-merge utility might combine lines of text
from each version in a way that corrupts the VI
and prevents the VI from opening.

If using the auto-merge utility on a VI breaks

LabVIEW NXG Application Collaboration

8 ni.com

https://www.ni.com/docs/bundle/labview-nxg-applicaton-collaboration/page/

Recommendation Details

code, you may need to revert the VI to an older
version to recover your code.

Minimize occurrences of renaming and moving
files.

When you rename or move a file, SCC systems
delete the file and create a new file with the new
name or location you provide. This operation
erases any version history of the file with its
previous name or location. Other developers
could introduce a breaking change when they
submit files that use the old name.

You might encounter this behavior when you
move a VI file to an application or library.

Source Code Control Models

Source code control systems are built using either a centralized or distributed model.

• Centralized Model—

In centralized source code control, a project exists in a single central repository,
usually on a server. Users create a local repository on a client where they make
modifications to the project, then upload their changes directly to the central
repository.

Apache Subversion® (SVN) is one example of an open-source system using the
centralized model.

• Distributed Model—

In distributed source code control, a project exists in a single central repository.
Clients have two local repositories: a clone of the central repository and a working
repository where users make modifications. Users submit modifications to the
working repository often during development. When users finish development
work, they push their changes to the central repository.

LabVIEW NXG Application Collaboration

© National Instruments 9

Git™ is one example of an open-source system using the distributed model.

Recommendations for Interacting with a Centralized Source Code
Control System while Developing a Project

Learn how to interact with a centralized source code control provider while developing
a project.

Checking Out Files and Making Modifications

Recommendation Details

Lock webVI files to prevent other developers
from making simultaneous changes.

Locking webVI files when you check them out
reduces the chances of code-breaking merge
conflicts.

Update your local copy of the project regularly
during development.

Keeping your local copy of the project in sync
with the central repository ensures you are
developing code against the most recent version
of the project.

Use the <centralized source control
provider> update command, where
<centralized source control
provider> is, replace with the name of your
provider.

Exit G Web Development Software before
updating your remote copy.

If you leave G Web Development Software open
when you update your local copy, it is possible
to corrupt files in the project.

Note You can apply these concepts when interacting with any centralized
source code control provider.

LabVIEW NXG Application Collaboration

10 ni.com

Checking In Files

Recommendation Details

Check in all files within the project folder that
have changes.

You may notice that some files have changes
even if you did not modify them. In particular,
the project file will frequently change due to
changes in other files.

Your source code control provider should scan
the project folder for changes. Use this feature to
identify all files with modifications.

Ignore the following directories when you
submit to the central repository:

• Builds
• .cache

Changes within these sub-directories do not
affect the functionality of source code in the
project. The project directory in the central
repository may already be configured to ignore
the folders. If not, use commands to configure
your source code control provider to ignore the
folders.

Add a descriptive comment to your commit.
Descriptive comments help you and other
developers interpret changes you submit to the
repository.

After you commit files to the repository, notify
other team members.

Other developers may need to change their code
based on changes you make.

Some collaboration tools, as well as some
source code control systems, can auto-generate
emails when changes to the repository occur.

Recommendations for Developing a Project in a Distributed Source
Code Control System

Learn how to interact with a distributed source code control provider while developing

LabVIEW NXG Application Collaboration

© National Instruments 11

a project.

Obtaining a Working Copy of a File and Making Modifications

Recommendation Details

Merge from the central repository regularly
during development.

Keeping your local copy of the project in sync
with the central repository ensures you are
developing code against the most recent version
of the project.

Fetch and merge to update code in your local
repository.

Commit files to your local repository often.
Commit to your local repository as often as you
want. It is common to commit locally many
times per day.

Committing and Pushing Files

Recommendation Details

Push all files with changes in the project folder.
Push any files with changes. Most source code
control providers scan for changes to the project
folder to help you identify changed files.

Ignore the following directories when you
submit to the central repository:

• Builds
• .cache

Changes within these sub-directories do not
affect the functionality of source code in the
project. The project directory in the central
repository may already be configured to ignore
the folders. If not, include the directories in a

Note The following information uses terminology and commands from Git.
However, you can apply these concepts when interacting with any
distributed source code control provider.

LabVIEW NXG Application Collaboration

12 ni.com

Recommendation Details

.gitignore file.

Refer to Git documentation for more
information.

Add descriptive comments when you commit to
your local repository or push to the central
repository.

Descriptive comments help you and other
developers interpret changes you submit to the
repository.

Merging Files and Resolving Conflicts

Manually editing and merging files helps you maintain stable source code when merge
conflicts occur.

Recommendation Details

Merge project (.lvproject) files manually.

Merge project files manually rather than using
the auto-merge utility in your source code
control system.

One expected merge conflict in the project file is
the checksum, which records the state of the file
when it was last loaded. When manually merging
the project file, you can select the checksum
from either version. G Web Development
Software always reloads the project and
generates a new checksum.

Manually edit a VI to resolve conflicts between
two versions.

Avoid performing merge operations on VIs.

If you identify a conflict between two versions of
a VI, view the two versions in NI Compare to
locate differences, then edit the code to satisfy
the requirements of a project.

LabVIEW NXG Application Collaboration

© National Instruments 13

https://www.ni.com/docs/bundle/labview-nxg-applicaton-collaboration/page/

Code Snippets

A code snippet is a PNG image of code that includes the functionality of a VI file.

You can drag a snippet directly onto the diagram and G Web Development Software
populates the code depicted in the snippet. You can embed snippets in documents,
forum posts, and emails to quickly share and collaborate on code. Snippets are also
useful for keeping sections of code that you use frequently handy.

Creating a Code Snippet

Use code snippets to store and share G Web Development Software code as PNG files
that become graphical code when you drag them onto the diagram.

1. Open a project.
2. On the diagram, highlight the code you want to capture as a snippet.
3. Click Edit » Create snippet from selection.
4. Choose where to save the snippet, give it a descriptive name, and click Save.

Adding a Code Snippet to the Diagram

Use code snippets to drag sections of code onto your diagram.

Before you begin, make sure you have any subVIs included in the code snippet in your
project.

Note If you edit a snippet in an image editor, the editor will remove the
VI information from the file and you will not be able to drop the snippet
onto the diagram.

Tip Sharing snippets is most useful for simple code. If your snippet
includes dependencies, such as subVIs or classes, anyone who uses your
snippet must have those dependencies in their project or they will see a
missing dependency error.

LabVIEW NXG Application Collaboration

14 ni.com

1. Save the snippet to your machine.

2. Open your project and navigate to the diagram of the VI you want to add the
snippet to.

3. Drag the snippet from its location on your machine to the diagram.
The code depicted in the snippet appears on the diagram.

Note If you edit a snippet in an image editor, the editor will remove the
VI information from the file and you will not be able to drop the snippet
onto the diagram.

© 2025 National Instruments Corporation.

LabVIEW NXG Application Collaboration

© National Instruments 15

	Collaborating on Web Applications
	Package Dependencies
	Sharing a Project and Including Package Dependencies
	Capturing the Package Dependencies of a Project
	Resolving Missing or Mismatched Package Dependencies on a Development System

	Recommendations for Developing a Project Stored in a Source Code Control Repository
	Source Code Control Models
	Recommendations for Interacting with a Centralized Source Code Control System while Developing a Project
	Checking Out Files and Making Modifications
	Checking In Files

	Recommendations for Developing a Project in a Distributed Source Code Control System
	Obtaining a Working Copy of a File and Making Modifications
	Committing and Pushing Files

	Merging Files and Resolving Conflicts

	Code Snippets
	Creating a Code Snippet
	Adding a Code Snippet to the Diagram

