
DAQExpress

2025-03-20

Contents Contents
DAQExpress 5.1 Manual . 6

Supported Hardware . 6
Data Acquisition and Control . 6

Analog Input Devices and Modules . 7
Analog Output Devices and Modules . 8
Counter/Timer Devices and Modules . 9
Digital I/O Devices and Modules . 9
Digitizer Modules . 11
Multifunction I/O Devices . 11
myDAQ - Student Data Acquisition Devices . 13
Sound and Vibration Devices and Modules . 13
Strain/Bridge Input Modules . 14
Temperature Input Devices and Modules . 14
User Interface Modules . 14

CompactDAQ Chassis . 14
Getting Started with DAQExpress . 15

Keyboard Shortcuts . 15
Tips and Tricks for Editing Diagram Code . 24
Live View: A Visual Representation of Hardware in Your System 26

Manually Adding Hardware to the Live View of SystemDesigner 28
Project Documents . 29
Customizing DAQExpress . 29

Customizing Mouse Wheel Behavior . 30
Displaying Tabs in the Editor . 31
Aligning Objects on the Panel . 31
Displaying the Diagram Grid . 31
Resetting the Workspace . 32

Creating Your First Application . 32
SubVIs . 32

Creating a SubVI . 34
Creating a SubVI from a Section of Existing Code . 35
Configuring an Existing VI For Use As a SubVI . 35

DAQExpress

2 ni.com

VI Reentrancy . 36
Choosing the Right VI Reentrancy Option for a SubVI 37

Capturing and Analyzing Data . 38
Analyzing Data in an Interactive Graph . 40
Customizing Analysis Functions Using Interactive Graphs . 42

Resizing Data Sets to Open in Analysis Panels . 43
Warning about the Abort Button . 44

Collaborating on Applications . 44
Package Dependencies . 45
Sharing a Project and Including Package Dependencies . 45
Capturing the Package Dependencies of a Project . 46
Resolving Missing or Mismatched Package Dependencies on a Development
System . 47

Programming in G . 48
Nodes: Computational Units . 49
Wires: Transferring Data between Nodes . 50

Troubleshooting Broken Wires . 50
Wiring Best Practices . 51
Wiring Shortcuts . 51

Constants . 52
Terminals . 53

Data Transfer between the Panel and the Diagram . 54
Dataflow between the Diagram and Another VI . 54
Dataflow between Duplicates of the Same Terminal . 55

Opening, Processing, and Closing Files . 57
Strategies for Improving VI Execution Speed . 58
Repeating Operations . 62

Repeating Operations until a Condition Occurs . 63
Repeating Operations a Set Number of Times . 66
Repeating Operations Once for Every Element in an Array 68
Loop Timing . 71

Adjusting the Execution Speed of a Loop . 73
Synchronizing the Execution of Multiple Loops 74

Accessing Data from the Previous Loop Iteration . 76
Accessing Data from Multiple Past Loop Iterations . 78

Error Management . 81

DAQExpress

© National Instruments 3

Executing Code Based on a Condition . 83
Parsing a String into Smaller Pieces . 85
State Machine Design Pattern . 89

When to Use a State Machine . 89
State Diagrams . 90
Standard States To Consider When Planning Your Program 91
Diagram Components of a State Machine . 92
Common State Machine Transition Code . 93

Best Practices for Creating Projects in G Web Development Software 95
File and Project Organization in G Web Development Software 96
Icons and Connector Panes for G Web Development Software Projects . . . 97
Panel Design for G Web Development Software Projects 102
Diagram Design for G Web Development Software Projects 109
Localization for LabVIEW NXG Projects . 118
Other Best Practices for LabVIEW NXG Projects . 120

Best Practices for Designing and Developing an Application Programming
Interface (API) in G Web Development Software . 121

File Organization and Node Naming for Distributed APIs 122
Component Organization for Distributed APIs . 124
Icons and Connector Panes for Distributed APIs . 125
Panel Design for Distributed APIs . 131
Data Type Selection for Distributed APIs . 131
Palette Taxonomy for Distributed APIs . 134
Documentation for Distributed APIs . 135
Error Message Design for Distributed APIs . 136
API Design for Distributed APIs . 137

Interfaces for MATLAB . 138
Calling MATLAB Functions and Scripts . 139
Debugging MATLAB Functions and Scripts . 141
Importing and Exporting MATLAB Data . 141
Migrating from MathScript Node to Interface for MATLAB 142

Migrating MathScript Functions to MathWorks Functions 143
Creating User Interfaces . 160

Centering a Cursor on a Graph or Chart . 160
Clearing Indicator Display Data in a Chart, Graph, or Array 161
Setting the Tabbing Order for Controls on the Panel . 161

DAQExpress

4 ni.com

Writing Multiple Plots to a Graph or Chart . 161
Testing and Debugging . 162

Highlighting Execution of the Diagram . 162
Using Probes to Check Values on a Wire . 163
Pausing Execution with Breakpoints . 163
Single-Stepping through VIs . 164
Viewing Wire Data from the Previous VI Execution . 165
Identifying Errors That Prevent You from Running Code . 166
Improve Applications with Execution Logs . 166
Viewing the Hierarchy of VIs in Your Application . 167

Language Libraries . 168

DAQExpress

© National Instruments 5

DAQExpress 5.1 Manual

The DAQExpress 5.1 Manual contains step-by-step instructions, programming
concepts, and reference information for quickly acquiring, analyzing, and presenting
measurements from data acquisition devices.

Top Tasks

What do you want to do? Where to go

Ensure software detects connected hardware. In SystemDesigner, you can find a list of
connected hardware.

Find the interactive measurement panel that's
right for you.

In SystemDesigner, browse through the available
measurement panels to start taking
measurements with your connected devices.

Learn how to automate your measurements
using G Dataflow code.

On the Learning tab, open interactive lessons to
learn programming basics for G Dataflow.

Supported Hardware

This product supports the following hardware:

• Data Acquisition and Control
• CompactDAQ Chassis

Data Acquisition and Control

This product supports the following data acquisition and control hardware:

• Analog Input Devices and Modules

Tip For interactive lessons on creating and debugging a custom application,
visit the Learning tab in software.

DAQExpress

6 ni.com

https://www.ni.com/docs/csh?topicname=supported-data-acquisition-and-control.html
https://www.ni.com/docs/csh?topicname=supported-compactdaq-chassis.html
https://www.ni.com/docs/csh?topicname=supported-analog-input-devices.html

• Analog Output Devices and Modules
• Counter/Timer Devices and Modules
• Digital I/O Devices and Modules
• Digitizer Modules
• Multifunction I/O Devices
• myDAQ - Student Data Acquisition Devices
• Sound and Vibration Devices and Modules
• Strain/Bridge Input Modules
• Temperature Input Devices and Modules
• User Interface Modules

Analog Input Devices and Modules

This product supports the following C Series Current Input Modules:

• NI 9203 (Screw Terminal/Spring Terminal)
• NI 9208 (DSUB/Spring Terminal)
• NI 9227 (Screw Terminal)
• NI 9246 (Ring Lug)
• NI 9247 (Ring Lug)
• NI 9253 (Screw Terminal)

This product supports the following C Series Universal Analog Input Modules:

• NI 9218 (DSUB/LEMO)
• NI 9219 (Spring Terminal)

This product supports the following C Series Voltage and Current Input Module:

• NI 9207 (DSUB/Spring Terminal)

This product supports the following C Series Voltage Input Modules:

• NI 9201 (DSUB/Screw Terminal/Spring Terminal)
• NI 9202 (DSUB/Spring Terminal)
• NI 9205 (DSUB/Spring Terminal)
• NI 9206 (Spring Terminal)
• NI 9209 (DSUB/Spring Terminal)

DAQExpress

© National Instruments 7

https://www.ni.com/docs/csh?topicname=supported-analog-output-devices.html
https://www.ni.com/docs/csh?topicname=supported-counter-timer-devices.html
https://www.ni.com/docs/csh?topicname=supported-digital-io.html
https://www.ni.com/docs/csh?topicname=supported-digitizer-modules.html
https://www.ni.com/docs/csh?topicname=supported-multifunction-io.html
https://www.ni.com/docs/csh?topicname=supported-mydaq-devices.html
https://www.ni.com/docs/csh?topicname=supported-sound-and-vibration.html
https://www.ni.com/docs/csh?topicname=supported-strain-pressure-and-force.html
https://www.ni.com/docs/csh?topicname=supported-temperature-devices.html

• NI 9215 (BNC/Screw Terminal)
• NI 9220 (DSUB/Spring Terminal)
• NI 9221 (DSUB/Screw Terminal/Spring Terminal)
• NI 9222 (BNC/Screw Terminal)
• NI 9223 (BNC/Screw Terminal)
• NI 9224 (Spring Terminal)
• NI 9225 (Screw Terminal)
• NI 9228 (Screw Terminal)
• NI 9229 (BNC/Screw Terminal)
• NI 9238 (Screw Terminal)
• NI 9239 (BNC/Screw Terminal)
• NI 9242 (Screw Terminal)
• NI 9244 (Screw Terminal)
• NI 9251 (Mini-XLR)
• NI 9252 (DSUB/Spring Terminal)

This product supports the following C Series Frequency Input Module:

• NI 9326

Analog Output Devices and Modules

This product supports the following Analog Output Devices:

• PCI-6703
• PCI-6704
• PCI-6711
• PCI-6713
• PCI-6722
• PCI-6723
• PCI-6731
• PCI-6733
• PCIe-6738

This product supports the following C Series Current Output Modules:

• NI 9265 (Screw Terminal/Spring Terminal)
• NI 9266 (DSUB/Screw Terminal)

DAQExpress

8 ni.com

This product supports the following C Series Voltage Output Modules:

• NI 9260 (BNC/Mini-XLR)
• NI 9262 (DSUB)
• NI 9263 (Screw Terminal/Spring Terminal)
• NI 9264 (DSUB/Spring Terminal)
• NI 9269 (Screw Terminal)

Counter/Timer Devices and Modules

This product supports the following C Series Counter Digital Input Module:

• NI 9361 (DSUB)

This product supports the following Counter/Timer Devices:

• PCI-6601
• PCI-6602
• PCI-6624
• PCIe-6612

Digital I/O Devices and Modules

This product supports the following C Series Digital Modules:

• NI 9375 (DSUB/Spring Terminal)
• NI 9401 (DSUB)
• NI 9402 (BNC)
• NI 9403 (DSUB)
• NI 9411 (DSUB)
• NI 9421 (DSUB/Screw Terminal/Spring Terminal)
• NI 9422 (Screw Terminal)
• NI 9423 (Screw Terminal/Spring Terminal)
• NI 9425 (DSUB/Spring Terminal)
• NI 9426 (DSUB)
• NI 9435 (Screw Terminal)
• NI 9436 (Screw Terminal)

DAQExpress

© National Instruments 9

• NI 9437 (Screw Terminal/Spring Terminal)
• NI 9472 (DSUB/Screw Terminal/Spring Terminal)
• NI 9474 (Screw Terminal/Spring Terminal)
• NI 9475 (DSUB)
• NI 9476 (DSUB/Spring Terminal)
• NI 9477 (DSUB)
• NI 9478 (DSUB)

This product supports the following C Series Relay Output Modules:

• NI 9481 (Screw Terminal)
• NI 9482 (Screw Terminal/Spring Terminal)
• NI 9485 (Screw Terminal)

This product supports the following Digital I/O Devices:

• PCI-6503
• PCI-6509
• PCI-6510
• PCI-6511
• PCI-6512
• PCI-6513
• PCI-6514
• PCI-6515
• PCI-6516
• PCI-6517
• PCI-6518
• PCI-6519
• PCI-6520
• PCI-6521
• PCI-6528
• PCI-6534
• PCI-DIO-32HS
• PCI-DIO-96
• PCIe-6509
• PCIe-6535
• PCIe-6535B
• PCIe-6536

DAQExpress

10 ni.com

• PCIe-6536B
• PCIe-6537
• PCIe-6537B
• USB-6501 (Screw Terminal)
• USB-6509 (Mass Termination)
• USB-6525 (Screw Terminal)

Digitizer Modules

This product supports the following C Series Digitizer Module:

• NI 9775 (BNC)

Multifunction I/O Devices

This product supports the following Multifunction I/O Devices:

• PCI-6110
• PCI-6111
• PCI-6115
• PCI-6120
• PCI-6122
• PCI-6123
• PCI-6132
• PCI-6133
• PCI-6143
• PCI-6154
• PCI-6220
• PCI-6221
• PCI-6224
• PCI-6225
• PCI-6229
• PCI-6230
• PCI-6232
• PCI-6233
• PCI-6236
• PCI-6238

DAQExpress

© National Instruments 11

• PCI-6239
• PCI-6250
• PCI-6251
• PCI-6254
• PCI-6255
• PCI-6259
• PCI-6280
• PCI-6281
• PCI-6284
• PCI-6289

• PCIe-6251
• PCIe-6259
• PCIe-6251
• PCIe-6320
• PCIe-6321
• PCIe-6323
• PCIe-6341
• PCIe-6343
• PCIe-6351
• PCIe-6353
• PCIe-6361
• PCIe-6363
• PCIe-6374
• PCIe-6376

• USB-6000 (Screw Terminal)
• USB-6001 (Screw Terminal)
• USB-6002 (Screw Terminal)
• USB-6003 (Screw Terminal)
• USB-6008 (Screw Terminal)
• USB-6009 (Screw Terminal)
• USB-6210 (Screw Terminal)
• USB-6211 (Screw Terminal)
• USB-6212 (Screw Terminal/BNC/Mass Termination)
• USB-6215 (Screw Terminal)
• USB-6216 (Screw Terminal/BNC/Mass Termination)
• USB-6218 (Screw Terminal/BNC)

DAQExpress

12 ni.com

• USB-6221 (Screw Terminal/BNC)
• USB-6225 (Screw Terminal/BNC/Mass Termination)
• USB-6229 Screw Terminal/BNC
• USB-6251 (Screw Terminal/BNC/Mass Termination)
• USB-6255 (Screw Terminal/BNC/Mass Termination)
• USB-6259 (Screw Terminal/BNC/Mass Termination)
• USB-6281 (Screw Terminal/Mass Termination)
• USB-6289 (Screw Terminal/BNC/Mass Termination)
• USB-6341 (Screw Terminal/BNC)
• USB-6343 (Screw Terminal/BNC)
• USB-6346 (Screw Terminal/BNC)
• USB-6349 (Screw Terminal)
• USB-6351 (Screw Terminal)
• USB-6353 (Screw Terminal)
• USB-6356 (Screw Terminal)
• USB-6361 (Screw Terminal/BNC/Mass Termination)
• USB-6363 (Screw Terminal/BNC/Mass Termination)
• USB-6366 (Screw Terminal/BNC/Mass Termination)

myDAQ - Student Data Acquisition Devices

This product supports the following myDAQ - Student Data Acquisition Device:

• myDAQ

Sound and Vibration Devices and Modules

This product supports the following C Series Sound and Vibration Input Modules:

• NI 9230 (BNC/Screw Terminal)
• NI 9231 (10-32 Coaxial)
• NI 9232 (BNC/Screw Terminal)
• NI 9234 (BNC)
• NI 9250 (BNC)

This product supports the following Sound and Vibration Devices:

DAQExpress

© National Instruments 13

• PCI-4461
• PCI-4474

Strain/Bridge Input Modules

This product supports the following C Series Strain/Bridge Input Modules:

• NI 9235 (Spring Terminal)
• NI 9236 (Spring Terminal)
• NI 9237 (DSUB/RJ50)

Temperature Input Devices and Modules

This product supports the following C Series Temperature Input Modules:

• NI 9210 (Mini-TC/Spring Terminal)
• NI 9211 (Screw Terminal)
• NI 9212 (Mini-TC/Screw Terminal)
• NI 9213 (Spring Terminal)
• NI 9214 (Screw Terminal)
• NI 9216 (DSUB/Spring Terminal)
• NI 9217 (Screw Terminal/Spring Terminal)
• NI 9226 (DSUB/Spring Terminal)

This product supports the following Temperature Input Device:

• USB-TC01

User Interface Modules

This product supports the following C Series User Interface Module:

• NI 9344 (User Switch)

CompactDAQ Chassis

This product supports the following CompactDAQ Chassis:

DAQExpress

14 ni.com

• cDAQ-9171
• cDAQ-9174
• cDAQ-9178
• cDAQ-9179

Getting Started with DAQExpress

Getting started with DAQExpress includes an introduction to Live view in
SystemDesigner, available keyboard shortcuts, tips and tricks for editing diagram
code, and introduction to project documents. Click the topics in the left-hand
navigation to find out more.

Keyboard Shortcuts

The following tables list keyboard shortcuts in the environment.

File Operations

Shortcut Action

Ctrl-N Open a new document and add
it to the existing project.

Ctrl-Shift-N Open a new project.

Ctrl-O Open an existing project.

Ctrl-W Close the current document.

Ctrl-S Save the current file.

Ctrl-Shift-S Save all open files.

Ctrl-P Print the current document.

Alt-F4 Quit.

DAQExpress

© National Instruments 15

Basic Editing

Shortcut Action

Ctrl-X

Shift-Delete
Cut.

Ctrl-C

Ctrl-Insert
Copy.

Ctrl-V

Shift-Insert
Paste.

Ctrl-Z

Alt-Backspace
Undo.

Ctrl-Y

Alt-Shift-Backspace
Redo.

Shift-F10

Application Key
Open shortcut menu for selected item.

Delete Delete.

Ctrl-Delete Delete and rewire.

DAQExpress

16 ni.com

Selecting and Moving Objects

Shortcut Action

Shift-Click

Select multiple objects.

Add object to the current
selection.

Ctrl-A Select all objects.

Arrow keys Move selected objects in grid-
sized increments.

Shift-Arrow keys Move selected objects four grid
units.

Ctrl-Drag Copy and drag selected object.

Ctrl-Shift-Drag Copy selected object and move
it along one axis.

Shift-Resize Resize selected object while
maintaining aspect ratio.

Ctrl-Resize Resize selected object while
maintaining center point.

Shift-Ctrl-Resize
Resize selected object while
maintaining both aspect ratio
and center point.

Ctrl-Drag open area
Create additional blank space
along the axis you drag the
mouse.

Double-click open area Add free label or comment to
panel or diagram.

Spacebar-Drag Pan across panel or diagram.

Navigating the Environment

Shortcut Action

Ctrl-F Find and replace text or objects

DAQExpress

© National Instruments 17

Shortcut Action

within a document.

Ctrl-Shift-F Find and replace text or objects
within a project.

Enter

F3

Ctrl-G

Search document for next
instance of text or an object.
This command is only available
when in Find mode.

Shift-Enter

Shift-F3

Shift-Ctrl-G

Search document for previous
instance of text or an object.
This command is only available
when in Find mode.

Ctrl-Tab
Cycle through document tabs in
the order in which they appear
onscreen.

Ctrl-Shift-Tab
Cycle through document tabs in
the opposite order in which
they appear onscreen.

Ctrl-Shift-Spacebar Shift focus to the application-
wide search bar.

Ctrl-\
Hide and show all tabs.

Hide and show all panes.

Navigating the Panel and Diagram

Editor Command Shortcut Action

Panel and
diagram selectors Ctrl-E Toggle between the panel and

diagram view. If the icon view is active,

DAQExpress

18 ni.com

Editor Command Shortcut Action

switch to the panel view.

Search
Ctrl-Spacebar

(Chinese keyboards) Ctrl-Alt-Spacebar
Shift focus to the palette search bar.

— Ctrl-' Toggle the diagram grid on/off.

— Shift-Ctrl-;
Toggle Smart Guides on/off. Smart
Guides help you align objects on the
panel.

Vertical scroll bar Mouse wheel Scroll the document vertically.

Horizontal scroll
bar Shift-Mouse wheel Scroll the document horizontally.

— Tab
Shift focus from one control to another
in tabbing order while the code is
running.

— Shift-Tab
Shift focus from one control to another
in reverse tabbing order while the
code is running.

— Ctrl-Alt-I Open and close the icon editor.

Debugging Commands

Editor
Command Shortcut Action

Step In

Ctrl-
Down
arrow

F10

Open a node and pause.

Step Over Ctrl-
Right

Execute a node without stepping into the node and pause at the next
node.

DAQExpress

© National Instruments 19

Editor
Command Shortcut Action

arrow

F11

Step Out

Ctrl-Up
arrow

Shift-F11

Complete execution of the current node and pause.

Add/Remove
Breakpoint Ctrl-[Add or remove a breakpoint on the selected node or wire to pause

execution at that breakpoint.

Add/Remove
Probe Ctrl-] Add or remove a probe on the selected wire, which allows you to view

intermediate values on the selected wire as the code runs.

Help Commands

Shortcut Action

Ctrl-H Display the Context Help.

F1 Access additional information on ni.com.

Running Code

Editor Command Shortcut Action

Run Ctrl-R Execute this
code.

Abort Ctrl-.

Stop the code
immediately,
before it
finishes
executing.

Ctrl-Run button Recompile the
code in the

DAQExpress

20 ni.com

Editor Command Shortcut Action

current
document.

Ctrl-Shift-Run button

Recompile the
code in all
documents in
memory.

Wiring

Editor Command Shortcut Action

Remove Broken Wires Ctrl-B Delete all broken wires from the
diagram.

—

Esc

Right-click

Ctrl-Z

Delete a wire you are in the
process of creating.

— Single-click wire Select one wire segment.

— Double-click wire Select a wire branch.

— Triple-click wire Select the entire wire.

— Ctrl-click wire Create a new wire branch from
an existing wire.

— Single-click while wiring Tack down the wire segment
and start a new wire segment.

— Double-click while wiring End the wire without
connecting it to a node.

— Tap spacebar while wiring
Switch the direction of a wire
between horizontal and
vertical.

Clean Up Diagram Ctrl-U
Organize the diagram or the
selected code to make it easier
to understand.

DAQExpress

© National Instruments 21

Editor Command Shortcut Action

Clean Up Selection

Clean Up Wire Select Clean Up Wire from the
shortcut menu

Route a selected wire to
decrease the number of bends
in the wire and avoid crossing
objects on the diagram.

Editing Text

Shortcut Action

Double-click text Select a single word in a string.

Triple-click text Select the entire string.

Ctrl-Right arrow

Ctrl-Left arrow

Move the cursor within a string
by one word in the direction of
the arrow.

Home Move the cursor to the
beginning of the current line.

End Move the cursor to the end of
the current line.

Ctrl-Home Move the cursor to the
beginning of the string.

Ctrl-End Move the cursor to the end of
the string.

Esc Cancel text entry.

Ctrl-Enter Submit text entry.

Capturing Data

Editor Command Shortcut Action

Capture panel data button Ctrl-D Save
current

DAQExpress

22 ni.com

Editor Command Shortcut Action

data
values
on the
panel to
the
Captured
Data tab.

Navigating the Project Files and Captured Data Tabs

Shortcut Action

* (Numeric keypad) Expand everything under the
selected folder.

+ (Numeric keypad) Expand the selected folder.

- (Numeric keypad) Collapse the selected folder.

Right arrow

Expand the selected folder if it
is closed. Otherwise, this
keyboard shortcut selects the
first child.

Left arrow

Collapse the selected folder if it
is open. Otherwise, this
keyboard shortcut selects the
parent.

Ctrl-up arrow

Ctrl-down arrow

Scroll through the pane without
changing the current selection.

Any printable key(s) Select the item beginning with
the entered letter(s).

Enter Open the selected document.

F2 Rename the selected item.

Page Up Move the selection to the first
item in the tree.

DAQExpress

© National Instruments 23

Shortcut Action

Home

Page Down

End

Moves the selection to the last
item in the tree.

Zooming

Shortcut Action

Ctrl-Mouse wheel Zoom.

Ctrl-+ Zoom in.

Ctrl-- Zoom out.

Ctrl-0 Zoom to fit.

Ctrl-9 Zoom to fit the selection.

Tips and Tricks for Editing Diagram Code

The following time-saving tools can help you edit diagram code more efficiently.

Creating Diagram Code

Task Tips and Tricks

Create constants, controls, and indicators using
the shortcut menu.

You can save time when adding constants,
controls, and indicators by using the shortcut
menu to add the object instead of navigating the
palette.

Right-click any input or output of a node and
select one of the Create options from the
shortcut menu. For example, to create a

DAQExpress

24 ni.com

Task Tips and Tricks

constant, select the Create Constant icon.

Create a subVI from existing code.

You can use the Create SubVI from Selection
option on the document toolbar to
automatically generate a new subVI from a
section of existing code.

Refer to Creating a SubVI from a Section of
Existing Code for more information.

Editing Diagram Code

Task Tips and Tricks

Replace a diagram object with a similar object
without using the palette.

You can replace an object on the diagram, such
as a node, terminal, or constant, with a different
type of the same object without navigating the
palette. For example, you can replace an Add
node with a Subtract node, a Numeric Terminal
with a Boolean Terminal, or a True Constant with
a False Constant.

Right-click the object, select Replace from the
shortcut menu, and select the desired
replacement object.

Remove a structure without deleting objects in
the structure.

You can remove a loop, Case Structure, or Flat
Sequence from the diagram without deleting the
code it contains.

Right-click the border of the structure and select
Remove Name of Structure from the shortcut
menu.

DAQExpress

© National Instruments 25

https://www.ni.com/docs/csh?topicname=subvi-from-selection.html
https://www.ni.com/docs/csh?topicname=subvi-from-selection.html

Organizing Diagram Code

Task Tips and Tricks

Align or distribute diagram objects to improve
the organization of the diagram.

On the document toolbar, click Order, Align, or
Distribute to organize a set of selected objects.

Delete all broken wires at one time. On the document toolbar, click Remove Broken
Wires to delete all broken wires on the diagram.

Clean up wires.

You can automatically route a selected wire to
decrease the number of bends in the wire and
avoid crossing objects on the diagram.

Right-click a wire and select Clean Up Wire from
the shortcut menu.

Move a terminal label to improve diagram
readability.

To change the position of a terminal label, select
the terminal and update the Label Placement
option in the Item tab.

Show a node label to improve diagram
readability.

To show a node label, select the node and
enable the Show Label option in the Item tab.

Live View: A Visual Representation of Hardware in Your System

The Live view displays all of the hardware that SystemDesigner can discover in your
system. Each device on the Live diagram represents the configuration of a real or
simulated device in your system.

Refer to the following image for an example of a device on the Live diagram.

DAQExpress

26 ni.com

1. Label and sub-label—Information about the device, such as the device name,
hostname, model, product family, and serial number.

2. Ports—Connections between devices in your system.
3. Device slots—Controllers, modules, and empty slots.

4. Hardware detection type—Glyph that indicates how SystemDesigner discovers the
device.

Hardware
Detection
Type

Icon Behavior

Auto-
discovered

• The device automatically appears on the Live diagram.
• Changes to the live device instantly appear on the Live diagram

representation of the device.
• When the device is unplugged, powered down, or is no-longer reachable, it

automatically disappears from the Live diagram.

Manually
identified

• The device may automatically appear on the Live diagram, or you may need
to add it. On the document toolbar, click Add Hardware.

Note Only some devices support controllers, such as PCs and PXI
chassis. If a device does support controllers, the only slot compatible
with a controller is the first slot.

DAQExpress

© National Instruments 27

Hardware
Detection
Type

Icon Behavior

• Changes to the live device may automatically appear on the Live diagram. If
a change does not appear, you may need to use one of the following
methods to view the change in SystemDesigner:
◦ Select the device and click Refresh under the Advanced section on the

Item tab.
◦ Click Identify Instruments to re-scan for GPIB instruments.

• When the device is removed from the system, you must manually remove it
from the Live diagram.

User
declared

• The device does not appear on the Live diagram until you add it manually.
• Changes to the live device do not apply to the Live diagram device

representation. You must manually specify changes in SystemDesigner.
• To remove the device from the system, you must manually remove it from

the Live diagram.

Related tasks:

• Manually Adding Hardware to the Live View of SystemDesigner

Manually Adding Hardware to the Live View of SystemDesigner

Manually add hardware devices that do not automatically appear on the Live diagram.

1. Navigate to the Live view of SystemDesigner.
2. On the document toolbar, click Add Hardware.
3. Follow the instructions for the appropriate device category:

Device Category Instructions

Network Resources Select the resource on the Add Hardware
dialog box and click Add.

Missing SystemDesigner Support Click Find Support to install required
instrument drivers with NI Package Manager.

DAQExpress

28 ni.com

Device Category Instructions

Non-Discoverable Devices Click Launch NI MAX to find and add the
device to the Live diagram manually.

Device with known IP address or hostname Click the Add hardware by address tab and
enter the IP address or hostname of the device
to which you want to connect, then click
Connect.

4. If the device requires login credentials, enter a valid password.
5. Click Add and verify that the device appears on the Live diagram.

Learn More

Complete the Getting Started with Instrument Control lesson in software to
learn more about setting up your devices in the Live view.

Project Documents

A document is anything that you can open, edit, and save in a project, such as a VI.
You can access documents from the Project Files tab.

Customizing DAQExpress

Note If you install SystemDesigner
support for a device, you may need
to restart LabVIEW NXG before the
device appears on the Live
diagram.

Note A device category only appears when a device in your system
meets the criteria for the category.

Note If your device still doesn't appear on the Live diagram, refer to your
hardware and driver manuals for troubleshooting help.

DAQExpress

© National Instruments 29

Customize the DAQExpress environment by changing the mouse wheel behavior,
displaying tabs in the editor, and adding guide lines to the panel and diagram.

• Customizing Mouse Wheel Behavior—Change the action the mouse wheel
performs within the workspace.

• Displaying Tabs in the Editor—Access information about your project and complete
project-related tasks.

• Aligning Objects on the Panel—Display guide lines to help you align and organize
objects on the panel.

• Displaying the Diagram Grid—Display guide lines to help you align and organize
objects on the diagram.

You can reset the workspace to the default settings.

Customizing Mouse Wheel Behavior

You can change the action the mouse wheel performs within the workspace.

1. Click File » Preferences to display the Preferences dialog box.
2. On the Editor tab, select the desired setting for Zoom Control.

Setting Description

Zoom with Mouse Wheel
Scroll with the mouse wheel to zoom in and
out within the workspace.

To scroll vertically within the workspace, hold
down the <Ctrl> key while scrolling with the
mouse wheel.

Zoom with Ctrl + Mouse Wheel (Default)
Hold down the <Ctrl> key while scrolling with
the mouse wheel to zoom in and out within
the workspace.

To scroll vertically within the workspace, scroll
with the mouse wheel.

DAQExpress

30 ni.com

3. Click OK.

Displaying Tabs in the Editor

Display tabs in the editor to access different types of information about your project as
well as to complete project-related tasks, such as troubleshooting or resource
management.

Click View and select the tab(s) you want to display from the pull-down menu.

Aligning Objects on the Panel

When Smart Guides are enabled, the editor displays guide lines to help you align and
organize objects as you add them to the panel.

1. Click File » Preferences to display the Preferences dialog box.
2. On the VI tab, in the Panel Editing Defaults section, place a checkmark in the

Smart Guides checkbox.

As you add objects to the panel, the editor displays guide lines to assist with
alignment, as shown in the following image.

Displaying the Diagram Grid

As you place objects on the diagram, they automatically align to a grid. Making this
grid visible can help you keep the diagram organized as you add and arrange objects.

1. Click File » Preferences to display the Preferences dialog box.
2. On the VI tab, in the Diagram Editing Defaults section, place a checkmark in the

Always Show Grid checkbox.

DAQExpress

© National Instruments 31

Resetting the Workspace

You can quickly restore the workspace to the default settings after you make
adjustments.

Click View » Reset Workspace.

• The Navigation Pane and Configuration Pane are expanded.
• The Errors and Warnings tab is collapsed on the bottom edge of the workspace.

Creating Your First Application

To create your first DAQExpress application, you can explore capturing and analyzing
data, creating subVIs—which are analogous to functions or subroutines in other
programming languages—customizing analysis functions, and analyzing data in an
interactive graph. Click the topics in the left-hand navigation to find out more.

SubVIs

After you build a VI, you can call it from the diagram of another VI within the same
project. A VI called from the diagram of another VI is a subVI. SubVIs contain reusable
code and simplify the diagrams of calling VIs. SubVIs are analogous to functions or
subroutines in other programming languages.

DAQExpress

32 ni.com

When you add an instance of a subVI to the diagram of another VI, the subVI appears as
a single node, similar to a node from the palette. When data in the calling VI reaches
the subVI node, the software executes the diagram of the subVI.

The following diagram shows two common situations that benefit from subVIs.

1. Users may have difficulty understanding the purpose of this section of code
because it performs several operations. The more complex a diagram, the more
time it takes to interpret sections of code.

2. The same code appears in two different places. Repeated code increases the
likelihood of errors. For example, if you change one section of repeated code, you
must remember to make the same change everywhere the code section occurs.

The following diagram shows two solutions that subVIs provide.

1. The Coin Flip subVI represents the highlighted code inside the For Loop of the
previous diagram. The subVI simplifies the diagram and communicates the

DAQExpress

© National Instruments 33

purpose of the code through its label and node icon.
2. The Percentage subVI represents one of the duplicate sections of highlighted code

from the previous diagram. The Percentage subVI performs the same function in
two places without repeating code. If you change code in the VI called by the
Percentage subVI, both instances of the subVI change.

Related tasks:

• Creating a SubVI
• Creating a SubVI from a Section of Existing Code
• Configuring an Existing VI For Use As a SubVI

Creating a SubVI

1. Right-click the diagram of an existing VI and select Create New SubVI to add an
empty subVI node to the diagram.
This creates a new .gvi file and adds it to the project. This file corresponds to the
subVI node that appears on the diagram.

2. Double-click the subVI node to begin adding code to the subVI.
3. Click Edit Icon and add inputs and outputs to pass data in and out of the subVI.

The inputs and outputs you add to the subVI icon must correspond to inputs and
outputs on the diagram.

To add the new subVI as a node on other diagrams, locate the subVI in the Project Files
tab and drag it to the diagram where you want to use it.

Related tasks:

• Creating a SubVI from a Section of Existing Code
• Configuring an Existing VI For Use As a SubVI

Note All instances of the subVI are automatically updated with most
changes you make. However, if you remove or rearrange inputs and outputs
on a subVI, wires attached to those inputs and outputs break in VIs that call
the subVI. Fix the calling VIs by deleting the broken wires and rewiring the
updated inputs and outputs.

DAQExpress

34 ni.com

Creating a SubVI from a Section of Existing Code

1. Select the section of code you want to reuse.
2. Click Edit » Create subVI from selection to generate a new .gvi file in the project.

To open this file, double-click the corresponding subVI node that contains the
section of code you selected. The subVI diagram and connector pane include
inputs and outputs for every wire that enters and exits the section of code. The
panel automatically includes the corresponding controls and indicators.

3. Rename and save the new .gvi file.
Choose a name that describes what function the VI performs so that other users
can clearly understand any diagram that uses the VI as a subVI.

To add the new subVI as a node on other diagrams, locate the subVI in the Project Files
tab and drag it to the diagram where you want to use it.

Related tasks:

• Configuring an Existing VI For Use As a SubVI

Configuring an Existing VI For Use As a SubVI

To turn an existing VI into a subVI, use the icon editor to assign input and output
terminals and to customize the appearance of the subVI node.

What to Do

Tip To disable automatically placing items on the panel, click File »
Preferences, select the VI tab, and disable Place items on the panel
when creating subVI from selection.

Note All instances of the subVI are automatically updated with most
changes you make. However, if you remove or rearrange inputs and outputs
on a subVI, wires attached to those inputs and outputs break in VIs that call
the subVI. Fix the calling VIs by deleting the broken wires and rewiring the
updated inputs and outputs.

DAQExpress

© National Instruments 35

1 Select Edit » Icon and connector pane to display the icon editor.

2
Select an icon template. You can set a background color and choose whether to include
the filename on the icon. You can also save the current design as a custom template.

3

Select a template for the terminal layout based on the number of terminals you need.

4
Click a terminal selector to assign a control or indicator on the subVI panel or diagram to
a specific input or output of the subVI.

5 Drag text and graphics from the palette to the icon to depict what the subVI does.

6
To use a VI as a subVI on another diagram, drag the VI from the Project Files tab to the
other diagram and wire the input and output terminals.

VI Reentrancy

You can choose from three VI reentrancy options that determine how your subVI
executes when it is called at more than one point in the dataflow at the same time.
Reentrancy is the simultaneous execution of multiple calls for a subVI.

By default, each call to the subVI is executed one after another. This may cause your

Tip You can drag the bottom right corner of the icon to change the number of
terminal selectors displayed.

DAQExpress

36 ni.com

application to execute slowly or have unexpected behavior. To allow multiple calls to a
subVI to execute simultaneously, set a reentrant execution state for the subVI.

Refer to the following table to determine which VI reentrancy option is best for your
subVI.

What your subVI
needs Option(s) to use

Ability to maintain
state

• Stateful maintains state for each instance of the subVI.
• None maintains a single state across all instances of the subVI.

Minimize wait time
when multiple VIs
call your subVI at the
same time

• Stateful eliminates wait time completely.
• Stateless results in wait time if there are more calls to the subVI than

there are clones. However, the wait time is always within a certain
range.

Determinism, or the
same wait time for
each call to the subVI

• Stateful guarantees the same exact wait time for each call to the subVI.
This minimizes jitter in applications involving time-sensitive data.

Minimize memory
usage

• None uses the least memory.
• Stateless uses less memory than Stateful if your subVI needs the other

features of reentrancy.

Minimize call
overhead

• Stateful is the most efficient for calling a subVI many times, such as
within a loop.

Related tasks:

• Choosing the Right VI Reentrancy Option for a SubVI

Choosing the Right VI Reentrancy Option for a SubVI

1. On the Document tab, in the Behavior section, click Properties to access VI

DAQExpress

© National Instruments 37

Reentrancy options for your subVI.
2. In the resulting dialog box, select the Execution tab.
3. Choose one of the following options:

Option Description

None Allocates a single data space for use by all
instances of the subVI. Therefore, the software
executes multiple, simultaneous calls to a
subVI one at a time in an indeterminate order.
Because every instance of the subVI shares the
same data space, all calls to the subVI also
share a single state, which preserves the
values of controls and uninitialized shift
registers among calls.

Stateless Allocates one copy, or clone, of the subVI for
each processor on your machine. Each call to
the subVI can then access one of these shared
clones instead of waiting on the main subVI. If
there are not enough shared clones for each
call to the subVI, additional clones are
allocated on demand. Each instance of the
subVI may access a different clone each time it
is called.

Stateful Allocates a separate clone for each instance of
the subVI. Each instance of the subVI stores
data in its own pre-allocated clone.

Related concepts:

• VI Reentrancy

Capturing and Analyzing Data

You can save and analyze the data that a device or code generates in a variety of ways.
Viewing data in different formats can provide insight into trends or outliers in the data.

What to Use

• An application that generates data

DAQExpress

38 ni.com

What to Do

Use the editor to capture, store, and analyze data.

1

Use indicators on the panel to display data that
your application generates. Right-click a control,
indicator, or terminal and select Capture data to
capture and save the data to use later.

2
Use the Capture panel data button to save
selected data as a data item.

3

View and interact with all the data you captured
in a project in the Captured Data tab. Each data
item represents a piece of data that originated
from a single data source at a single time.

4

You can double-click a data item to view it in the
workspace, which shows the data in an
interactive graph. If the data is an analog
waveform of double-precision floating-point
numbers or a 1D array of double-precision
floating-point numbers, you can apply and
customize an analysis filter by choosing an
option in the Plots tab.

DAQExpress

© National Instruments 39

Right-click a data item in the Captured Data tab
and select Export to export data to the following
file formats:

• Comma-separated values file (.csv)
• Technical Data Management Streaming file

(.tdms)
• MATLAB® formatted binary file (.mat)

Related tasks:

• Analyzing Data in an Interactive Graph
• Customizing Analysis Functions Using Interactive Graphs

Related information:

• Importing and Exporting MATLAB Data

Analyzing Data in an Interactive Graph

You can better understand your data by visualizing it in an interactive graph.

Viewing data in different formats can provide insight into trends or outliers in the data.
For certain data types, you can also use an analysis panel to configure and apply an
analysis function, capture the data that the function produces, and create a node that
replicates the analysis function you configure to use in your code.

1. Capture data that your application generated using one of the following options:
◦ Right-click a panel object and select Capture data.
◦ Select Data » Capture panel data.

2. Double-click the data item in the Captured Data tab to visualize the data in the
workspace.

3. Use the workspace to explore and configure the data in the graph.
4. If you want to apply an analysis function to the data in the graph, select an analysis

panel on the Plots tab.

DAQExpress

40 ni.com

https://www.ni.com/docs/csh?topicname=import-export-matlab-data.html

Analysis Function Description

Amplitude Measurements Performs peak amplitude measurement.

Curve Fit Finds the line that best represents an input
signal or input data set using a specific fitting
method.

FFT Spectrum Computes the averaged FFT spectrum of a
signal.

Filter Applies a lowpass, highpass, bandpass, or
bandstop filter to a signal.

Histogram Finds the discrete histogram of a signal.

Limit Testing Performs limit testing by comparing the signal
to upper and lower limits that you define.

Pulse and Transition Measurements Returns various measurements of a specific
pulse in a periodic waveform or an array of
periodic waveforms, such as the period, pulse
duration, and duty cycle.

Resample Resamples a signal according to a specific
delay and sampling interval.

Scaling and Mapping Scales a signal based on a straight line.

Signal Correlation Computes the auto correlation of a signal or
cross correlation of two signals.

Statistics Performs statistical calculations on a signal.

Tone Measurements Finds tones with specific amplitude and
frequency parameters.

Adjust the variables of the analysis function until it meets the requirements of your
application. The graph updates in real time to show the resulting data on the same
graph as the original data. You can click Capture & view data in the top right

Note To use analysis panels, your data item must be an analog
waveform of double-precision floating-point numbers or a 1D-array of
double-precision floating-point numbers. If your data item does not meet
the data type requirement, use a conversion node and capture the
converted data to complete this step.

DAQExpress

© National Instruments 41

corner to view only the data that the function produces with the current
configuration.

Related tasks:

• Customizing Analysis Functions Using Interactive Graphs
• Capturing and Analyzing Data

Customizing Analysis Functions Using Interactive Graphs

Use visualized data to configure filters, frequency domain transfers, and statistical
analysis functions and create a customized node that you can use in your code.

1. Locate or place one of the following analysis nodes on the diagram of a VI.

Analysis Function Description

Amplitude Measurements Performs peak amplitude measurement.

Curve Fit Finds the line that best represents an input
signal or input data set using a specific fitting
method.

FFT Spectrum Computes the averaged FFT spectrum of a
signal.

Filter Applies a lowpass, highpass, bandpass, or
bandstop filter to a signal.

Histogram Finds the discrete histogram of a signal.

Limit Testing Performs limit testing by comparing the signal
to upper and lower limits that you define.

Pulse and Transition Measurements Returns various measurements of a specific
pulse in a periodic waveform or an array of
periodic waveforms, such as the period, pulse
duration, and duty cycle.

Note To create a node that replicates the analysis function you
configured, open the Configured Code pane at the bottom of the analysis
panel, click Copy to Clipboard, and then paste the node onto the
diagram in a VI.

DAQExpress

42 ni.com

Analysis Function Description

Resample Resamples a signal according to a specific
delay and sampling interval.

Scaling and Mapping Scales a signal based on a straight line.

Signal Correlation Computes the auto correlation of a signal or
cross correlation of two signals.

Statistics Performs statistical calculations on a signal.

Tone Measurements Finds tones with specific amplitude and
frequency parameters.

2. Select the node and click Analysis panel on the Item tab.
3. Adjust the variables of the analysis node until it meets the requirements of your

application.
a. Above the graph, choose between a sample input and any valid data item that

you previously captured and saved in the project.
b. To the right of the graph, adjust the inputs of the node.

The graph updates in real time to show sample data and the data resulting from
the analysis function. Click Capture & view data in the top right corner to view
only the data that the function produces with the current configuration.

4. Open the Configured Code pane at the bottom of the analysis panel to view the
customized node that corresponds to the function. To update the configuration of
the node on the diagram, click Update node. If you want to create a new node with
the current configuration, click Copy to Clipboard and then paste the new node
onto the diagram.

Related tasks:

• Resizing Data Sets to Open in Analysis Panels
• Capturing and Analyzing Data

Resizing Data Sets to Open in Analysis Panels

If you need to open a large data set in an analysis panel, you must first trim the data to
a smaller size.

Analysis panels have the following upper limits to the amount of data they can

DAQExpress

© National Instruments 43

process:

• 1 million samples per channel when you launch analysis panels from the
Interactive Analysis section

• 9 MB total file size when you select a data set from the Input Signal pull-down
menu of an analysis panel

Complete the following steps to resize a data set:

1. Double-click the data item to open it in the workspace and use the thumbnail view
to select a subset of the data.

2. Click Crop to Frame to create a new capture of the subset.
If the subset meets the upper limits criteria, you can open the subset in an analysis
panel.

Warning about the Abort Button

The Abort button stops a program before it completes execution.

Aborting a program that uses external resources, such as external hardware or file I/O
operations, might leave the resources in an unknown state and cause the program to
return errors the next time you access the resources. An alternative to using the Abort
button is to enclose code that uses external resources in a While Loop with a Stop
button. Using the Stop button instead of the Abort button cleans up external resources
before stopping execution.

Collaborating on Applications

To find out more about collaborating on applications, including understanding
package dependencies, sharing project and package dependencies, finding missing
packages, and capturing package dependencies, click the topics in the left-hand

Note If you are aborting a program because the code uses a Flat Sequence
Structure with many frames, consider using a State Machine design pattern
instead.

DAQExpress

44 ni.com

navigation.

Package Dependencies

In projects, a package dependency is a package installed on the development
system and used in the project.

The Package Dependencies document (.sls) stores a list of packages a project
uses so you can set up a development system with the required packages. With the
Package Dependencies document, you can do the following:

• Share a project that allows a recipient to easily set up their development system
with the package dependencies of the project.

• Create a project that serves as a template. Other developers can use the template
project to set up their development system and begin development of the project.

• Update the list of package dependencies any time you add a package dependency
to the project. Share the updated list with other developers so they can see new
package dependencies you add to the project.

The Package Dependencies document is a Salt State file (.sls). For more information
about Salt States, visit the SaltStack Documentation website and search for the
SALT.STATE.PKG state module.

Related tasks:

• Sharing a Project and Including Package Dependencies

Related information:

• SaltStack Documentation
• NI Package Manager Manual

Sharing a Project and Including Package Dependencies

Use the Package Dependencies document to store a list of packages a project uses so
you can set up a development system with the required packages.

DAQExpress

© National Instruments 45

https://docs.saltstack.com/
http://www.ni.com/documentation/en/ni-package-manager/latest/manual/manual-overview/

1. Create a project that uses NI software, drivers, or third-party packages.
2. Capture package dependencies on the source system—Identify the packages a

project requires and store a list of those packages in the Package Dependencies
document.

3. Copy the project folder and save it on the target system.
4. Resolve package dependencies on the target system—Set up a development

system by installing packages listed in the Package Dependencies document.

Related concepts:

• Package Dependencies

Capturing the Package Dependencies of a Project

Identify the packages a project requires and store a list of those packages in the
Package Dependencies document.

1. On the Project Files tab, right-click the project and select Capture package
dependencies.
The Package Dependencies document opens, scans the project, and displays a list
of packages the project requires.

2. (Optional) Make changes to the project, return to the Package Dependencies
document, and click Recapture dependencies.

3. Click File » Save all.

After you capture the package dependencies of a project, copy the project folder, save
it on another development system, and use the Package Dependencies document to
resolve package dependencies on that system.

Related tasks:

• Sharing a Project and Including Package Dependencies

Note When you capture package dependencies, you must have the
required packages installed on the source system and the code in the
project must be in working condition.

DAQExpress

46 ni.com

https://www.ni.com/docs/csh?topicname=capture-package-dependencies.html
https://www.ni.com/docs/csh?topicname=resolve-package-dependencies.html

• Resolving Missing or Mismatched Package Dependencies on a Development
System

Resolving Missing or Mismatched Package Dependencies on a
Development System

Set up a development system by installing packages listed in the Package
Dependencies document.

Before you can resolve package dependencies on a development system, copy the
project folder from the system on which the project was originally developed, then
save the folder on the target system.

1. Launch the project, then open the Package Dependencies document.
When you open the Package Dependencies document, it searches the system to
identify missing or mismatched packages for the project.

2. Click Resolve.
The Package Dependencies document displays checkboxes next to the missing or
mismatched packages. You can review the packages before installing them with NI
Package Manager. By default, the Package Dependencies document selects all
missing or mismatched packages.

3. Click Resolve selected.
The Package Dependencies document launches NI Package Manager.

4. Follow the prompts in NI Package Manager to install the packages you selected.
Depending on the type of package you install, you may need to restart G Web
Development Software or the development system.

Related tasks:

• Sharing a Project and Including Package Dependencies
• Capturing the Package Dependencies of a Project

Related information:

Note NI Package Manager does not support downgrading packages.

DAQExpress

© National Instruments 47

• NI Package Manager Manual

Programming in G

G Dataflow (G) is a graphical programming language in which nodes on a diagram
execute when data is available for all required inputs.

A node in G Dataflow executes only when it receives data for all wired inputs. When a
node finishes executing, it passes data along the wire to the next node in the dataflow
path. The movement of data along the wires and through the nodes is called dataflow
and determines the execution order of nodes on the diagram.

Because a node executes only when all of the inputs receive data, the Subtract node in
the following G diagram cannot execute until Add finishes executing and passes the
data to Subtract.

However, in the following G diagram, the Add, Random Number, and Divide nodes all
meet the dataflow requirement of having the required input data they need to execute.
Nodes not connected to each other by wires can execute in any order because the
nodes do not depend on data from another node. You cannot determine which node
executes first.

DAQExpress

48 ni.com

http://www.ni.com/documentation/en/ni-package-manager/latest/manual/manual-overview/

Because the flow of data, rather than the sequential order of commands, determines
the execution order of nodes in G, you can create diagrams that have simultaneous
operations. The image above illustrates operations that run simultaneously.

Nodes: Computational Units

Nodes are objects on the diagram that accept inputs, return outputs, and perform
operations when a program runs.

They are analogous to statements, operators, functions, and subroutines in text-based
programming languages.

Anatomy of a Node

Nodes have three components.

DAQExpress

© National Instruments 49

1 Icon—Illustrates the purpose of the node.

2 Input parameters—Pass data into the node. The node uses this data to perform computations.

3 Output parameters—Pass data from the node to the rest of the diagram after the node executes.

Wires: Transferring Data between Nodes

Wires transfer data between nodes on a diagram by connecting the output terminal of
one node to one or more input terminals of another node.

Wires have the following properties:

• A wire has a single data source.
• A wire can carry data from its single data source to more than one node that reads

the data as an input.
• The color, style, and thickness of a wire represent the type of data passing between

nodes.

Troubleshooting Broken Wires

A broken wire indicates that dataflow cannot run across the wire. You cannot run code
that contains broken wires. Resolve each wire to make dataflow valid and run the
code.

Broken wires look like the following image.

Make sure your code meets the following requirements to resolve each wire:

• Each wire has a single data source.
• There are no unwired or overlapping tunnels when wiring through structures.

DAQExpress

50 ni.com

• All wires are connected to a node.
• Every data source is wired to at least one output.

For example, you cannot wire two indicators together.
• The output and input of the same node are not wired together.
• Wire compatible data types together.

For example, you cannot wire a Boolean output to a string input.
• Triple-click the wire to select the entire wire.

You might see hidden wire segments that help you identify one of the causes listed
above.

• Use the error list to find broken wires and an explanation.
• If you still cannot identify the cause of the broken wire, click Remove Broken Wires

on the Document toolbar.

Wiring Best Practices

Poor wire organization might not produce errors, but it can make the diagram difficult
to read and debug or make the code appear to do things it does not do. Use these best
practices as you develop your diagrams.

• Use a left-to-right and top-to-bottom layout. Although the positions of diagram
elements do not determine execution order, wiring from left to right keeps the
diagram organized and easy to understand. Only wires and structures determine
execution order.

• Control terminal wires should exit the right side of the terminal, and indicator
terminal wires should enter on the left side of the terminal.

• Wire around objects. Do not cover wires with other objects.
• Use as few bends as possible.

Wiring Shortcuts

You can use the following set of shortcuts to help you create wires more efficiently.

Note Remove Broken Wires deletes all broken wires, even those you
might not see.

DAQExpress

© National Instruments 51

Editor Command Shortcut Action

Remove Broken Wires Ctrl-B Delete all broken wires from the
diagram.

—

Esc

Right-click

Ctrl-Z

Delete a wire you are in the
process of creating.

— Single-click wire Select one wire segment.

— Double-click wire Select a wire branch.

— Triple-click wire Select the entire wire.

— Ctrl-click wire Create a new wire branch from
an existing wire.

— Single-click while wiring Tack down the wire segment
and start a new wire segment.

— Double-click while wiring End the wire without
connecting it to a node.

— Tap spacebar while wiring
Switch the direction of a wire
between horizontal and
vertical.

Clean Up Diagram

Clean Up Selection
Ctrl-U

Organize the diagram or the
selected code to make it easier
to understand.

Clean Up Wire Select Clean Up Wire from the
shortcut menu

Route a selected wire to
decrease the number of bends
in the wire and avoid crossing
objects on the diagram.

Constants

A constant is a fixed piece of data that exists only on the diagram. Use a constant
instead of a control when you know that a certain piece of data should always be the

DAQExpress

52 ni.com

same regardless of other parts of your code.

You can use the following types of constants in graphical programming:

• Universal constant—Represents commonly used values that are always the same,
such as pi (π), the speed of light, or the character that represents pressing the
Enter key.

• User-defined constant—Accepts user input. You define the values as you develop
the code.

Related information:

• Constants

Terminals

Terminals transfer data between the diagram and panel, between the diagram and
other nodes, or between duplicates of the same terminal on the diagram.

As the following example shows, the color and symbol of each terminal indicate the
data type of the terminal.

Related concepts:

• Data Transfer between the Panel and the Diagram
• Dataflow between the Diagram and Another VI
• Dataflow between Duplicates of the Same Terminal

Related information:

• Data Type Reference

DAQExpress

© National Instruments 53

https://www.ni.com/docs/csh?topicname=constants.html
https://www.ni.com/docs/csh?topicname=data-types.html

Data Transfer between the Panel and the Diagram

Data in a control flows from the panel to the diagram through a corresponding input
terminal. Data in an output terminal flows from the diagram to the panel through a
corresponding indicator.

The following image shows the flow of data between the panel and diagram of a VI.

Related concepts:

• Terminals
• Dataflow between the Diagram and Another VI
• Dataflow between Duplicates of the Same Terminal

Dataflow between the Diagram and Another VI

Terminals transfer data between the diagram and other VIs via subVIs. The following
image shows the flow of data between terminals of the calling VI and a subVI.

DAQExpress

54 ni.com

1. The calling VI passes data to the Percentage subVI through the input terminals of
the subVI node.

2. Data from the calling VI flows through the input terminals on the diagram of the
subVI.

3. As the subVI executes, data flows to the output terminal of the subVI diagram.
4. Data flows from the output terminal of the subVI diagram to the output terminal of

the subVI node in the calling VI.

Related concepts:

• Terminals
• Data Transfer between the Panel and the Diagram
• Dataflow between Duplicates of the Same Terminal

Related information:

• SubVIs

Dataflow between Duplicates of the Same Terminal

You can use a duplicated output terminal to write to an indicator at multiple places on
the diagram. You can also use a duplicated input terminal to read from a control at
multiple places on the diagram.

DAQExpress

© National Instruments 55

https://www.ni.com/docs/csh?topicname=what-is-a-subvi.html

In the following example, the String indicator displays a different message depending
on which While Loop is executing. This example also uses a duplicate of the Run
button to control the execution of both While Loops.

Figure 1. Panel

Figure 2. Diagram

Related concepts:

• Terminals
• Dataflow between the Diagram and Another VI
• Data Transfer between the Panel and the Diagram

Note Terminals are duplicates of one another if they have the exact same
label. You can duplicate a terminal by right-clicking the terminal and
selecting Create Duplicate Terminal. Copying and pasting a terminal does
not create a duplicated terminal.

DAQExpress

56 ni.com

Opening, Processing, and Closing Files

What to Use

• Open/Create/Replace File
• A read or write node from the Storage palette category
• Close File

What to Do

Create the following diagram to programmatically open, write to, and close a text file.

Customize the gray sections for your unique programming goals.

1

Open, create, or replace a file by using the Open/
Create/Replace File node and specifying its
precise behavior. To access the enumerated list
of possible behaviors, create a constant from the
operation input of the node.

2

After the file opens, a unique identifier called a
refnum represents the file. A file refnum is
required for most nodes that process files.

3

Process the file by using a file I/O node from the
Storage palette category. You can interact with
binary or text files. In this example, Write to Text
File writes Hello world to the file
represented by the file refnum.

4

Close the file to release the object from memory
and avoid potential errors. If you do not close a
file, the reference cannot be closed until the VI
that opened the file finishes executing.

DAQExpress

© National Instruments 57

https://www.ni.com/docs/csh?topicname=open-create-replace-file.html
https://www.ni.com/docs/csh?topicname=storage-nodes.html
https://www.ni.com/docs/csh?topicname=close-file.html

Troubleshooting

• Some file I/O nodes are considered high-level nodes and perform all three steps of
a file I/O process—open, read/write, and close. Avoid placing high-level file I/O
nodes, such as Read from Spreadsheet File and Write to Spreadsheet File, in loops
because these nodes perform open and close operations each time they run.

Strategies for Improving VI Execution Speed

Factors like inefficient memory use, poorly designed panels, and too many I/O calls
can negatively affect the execution speed of your VI. However, there are several
strategies you can use to ensure that your VI runs more efficiently.

Strategies for Improving Execution Speed through Memory Management

Effective memory management can improve the execution speed of your VI. By
minimizing memory usage, you can help alleviate slow VI execution speeds, which are
affected by allocation and deallocation operations. Execution speed is indirectly
affected by the allocation of more space in memory because operations slow down if
they reach the memory's capacity.

The more you allocate, deallocate, or move data in memory, the more memory the VI
uses. Memory can also indirectly affect execution speed because allocating more
space in memory leaves less memory for other operations, causing them to slow down
if they reach the memory's capacity.

When creating a VI, consider the following guidelines:

• Use consistent data types and watch for coercion dots when passing data to
subVIs.

• Avoid using hierarchical data types such as arrays of clusters containing large
arrays or strings.

• Reduce the use of nested subVIs inside of other VIs, as these can cause an
exponential increase in the number of VI clones needed to maintain separate data
spaces for each call to a subVI.

Avoid the following, which can create additional and unnecessary copies of data:

DAQExpress

58 ni.com

• Repeatedly resizing data—Clearing space in memory or adding and removing data
from memory creates overhead and can take time.

• Overusing duplicated array and string terminals—Creating more than one
corresponding object on the diagram can increase memory usage.

• Unintentionally coercing data—Coercion dots appear on nodes when data types
are coerced. Data type coercion can decrease execution speed and increase
memory usage, especially when you use complex data types or large arrays
because they can increase memory usage.

• Displaying large arrays and strings on panels—Displaying the smallest array or
string on the panel will ensure that copies of data remain small. The larger the
array or string, the larger the copy of contained data.

Strategies for Improving Execution Speed by Minimizing I/O Calls

I/O calls can incur a significant amount of overhead and take more time than a
computational operation because I/O calls have to wait on external resources. You can
improve VI execution speed by using various strategies to troubleshoot or optimize I/O
calls.

The following example diagram shows an inefficiently structured loop. The loop is
inefficient because the I/O functions within the loop run multiple times unnecessarily
and are structured to write a small amount of data each iteration.

When troubleshooting or optimizing your I/O calls, examine the following items to
ensure your loop runs efficiently:

DAQExpress

© National Instruments 59

• I/O calls—You can reduce excessive overhead by reducing the number of I/O Write
or Read calls. Limit the use of nodes within your loop that interact with external
resources. Nodes like Write to Text File and TCP Write can incur the overhead of the
external resource they interact with, like a network card, an OS, or file system.

• Data transfer quantities—Instead of making multiple I/O calls with smaller
quantities of data, structure the VI to transfer large amounts of data with each call.
Consolidate data into large chunks by using arrays and concatenated strings
whenever possible.

• Unnecessary nodes outside of loops—Avoid putting a node in a loop if the node
produces the same value for every iteration. Instead, move the node out of the
loop and pass the result into the loop. Also, keep nodes that open or close
references such as TCP Open Connection and Close File outside of loops to avoid
repetitive overhead delays when interacting with external resources.

The following example diagram shows the loop restructured for efficiency:

1. The loop is efficient because it minimizes the number of I/O calls.
2. The loop is structured to transfer significant amounts of data with each call.
3. The loop does not contain unnecessary computations.

Guidelines for Designing Efficient Panels

Optimizing your panel can improve the execution speed of your VI. Design and
configure your panel according to the following guidelines:

• Remove unnecessary panel objects and avoid adding objects to the panel that
aren't necessary for controlling input to the diagram or observing output data.

• Avoid transparent and overlapped panel objects unless necessary.
• When using charts, reducing Chart History Length in the Configuration pane will

DAQExpress

60 ni.com

set the maximum number of data points drawn to your chart.
• When using graphs and charts, turn off auto-scaling, axis labels, anti-aliased line

drawing, and axis grids to prevent drawing more elements. A graph with fewer
elements takes less time to redraw every time the graph updates.

Using Parallel Loops to Increase VI Execution Speed

When multiple loops run in parallel, the VI switches between them periodically.
Parallel loops can help decrease execution time by simultaneously running
independent tasks within individual loops. In the following example diagram, a single
loop contains multiple independent tasks. This loop is inefficient because execution
speeds can vary due to the lack of loop timing. In this example, the DAQ operation
must wait for the slower I/O function and a status check to complete each iteration.

Since all parallel loops share the same processor resources, consider the following
practices to make sure other loops do not interrupt the timing or execution of your
important tasks:

• Important Operations—Because you want this type of operation to execute as
frequently as possible, do not add timing nodes inside the loop to delay its
execution.

• Executions Dependent on Dequeue Element node—The Dequeue Element node
can halt the execution of a loop until an element is ready in the queue. This node
allows more important loops to use more of the processor's time.

• Low-Importance Operations—Because this type of operation is the least
important, you can use a Wait node to run the operation less often and yield
execution time to the other loops.

DAQExpress

© National Instruments 61

The following is an example of a recreated VI using the considerations:

1. The Read DAQ loop reads data from a DAQ device and sends the data to a queue.
Do not add timing nodes because you want this type of operation to execute as
frequently as possible.

2. The Write to File loop can execute more slowly as it is logging data points for later
analysis. The execution of this loop can be dependent on elements being ready in
the queue because it does not need to execute as frequently.

3. The Check Temperature loop displays temperature data to the user and uses a
Wait node to run less often and yield execution time to the other loops because it is
the least important.

Repeating Operations

When building an application, you may need to repeat code a set number of times or
until a specified condition is met. For example, you may have a section of code that
you know you want to run three times. You may want your code to keep running until a
user clicks a stop button. You can use loops to do this.

A loop is a programming element that executes the same code multiple times, or
iterations.
Related tasks:

• Repeating Operations until a Condition Occurs

DAQExpress

62 ni.com

• Repeating Operations a Set Number of Times
• Repeating Operations Once for Every Element in an Array

Types of Loops

You can use the following loops to repeat code in G Dataflow: a For Loop and a While
Loop.

Loop Behavior Example Diagram

For Loop

Repeats the
code inside
the loop for a
set number of
iterations.

Generate five
random
numbers
between 1 and
10.

While Loop

Repeats the
code inside
the loop until
a specified
condition is
met.

Continue
rolling a die
until the value
of the die is 6.

Related concepts:

• Loop Timing

Related information:

• While Loop
• For Loop

Repeating Operations until a Condition Occurs

DAQExpress

© National Instruments 63

https://www.ni.com/docs/csh?topicname=while-loop.html
https://www.ni.com/docs/csh?topicname=for-loop.html

In some situations, you might know that you want to repeat an operation, but you do
not know exactly how many times you want to repeat that operation. Instead, you
know only that the operation should repeat until a certain condition occurs. For
example, you might have a program you want to run repeatedly until a user clicks a
stop button or until the code inside the loop produces a particular value.

Use a While Loop to repeat code until a specified condition is met. A While Loop
behaves similarly to a do while loop in other programming languages.

What to Use

While Loop

What to Do

Create the following diagram to repeat an operation until a condition occurs.

Customize the gray sections for your unique programming goals.

1
Place the code you want to repeat on the
subdiagram of a While Loop.

DAQExpress

64 ni.com

https://www.ni.com/docs/csh?topicname=while-loop.html

2

To specify the condition under which the loop
stops, create code that produces a True Boolean
value when the desired stop condition occurs
and wire that Boolean value to the condition
terminal. By default, the condition terminal is
configured to Stop if True. To stop the loop for a
False Boolean value instead of a True value,
right-click the condition terminal and select
Continue if True.

You can also specify when the loop stops by
wiring an error cluster to the condition terminal.
In this situation, the Boolean value of the
status of the error is used to determine when
the loop stops.

3

If you want to know how many loop iterations
executed before the stop condition occurred,
use the iteration terminal to return the current
loop iteration count. The iteration terminal is
zero-indexed, meaning it ranges from 0 to n -1.
Use Increment to obtain the true number of loop
iterations.

4

If you want to collect the result of each loop
iteration in an array, use an auto-indexing
output tunnel to pass values out of the loop. To
enable auto-indexing for an output tunnel, right-
click the tunnel and select Append Mode » Auto
Index Values. If you do not enable auto-
indexing, the loop returns only the value from
the last loop iteration.

Troubleshooting

If the execution speed of the loop is too fast, place a Wait node on the subdiagram of

Note A While Loop always executes
at least one time.

DAQExpress

© National Instruments 65

the loop to specify a wait period.

Related concepts:

• Loop Timing

Related tasks:

• Repeating Operations
• Repeating Operations a Set Number of Times
• Repeating Operations Once for Every Element in an Array

Repeating Operations a Set Number of Times

Instead of creating the same code on a diagram multiple times, you can write code in a
single location and use a For Loop to programmatically repeat it. For example, you
might want to read a specific number of measurement samples from a device. You can
place the code that performs the measurement operation on the subdiagram of a For
Loop and configure the loop to repeat the operation as many times as your application
requires.

What to Use

• For Loop
• Count terminal of the For Loop

What to Do

Create the following diagram to repeat an operation a set number of times.

Customize the gray sections for your unique programming goals.

DAQExpress

66 ni.com

https://www.ni.com/docs/csh?topicname=for-loop.html
https://www.ni.com/docs/csh?topicname=for-loop.html

1
Place the code you want to repeat on the
subdiagram of a For Loop.

2

Specify how many times the For Loop repeats its
subdiagram by wiring the desired value to the
count terminal.

3

If you want to know which loop iteration is
currently executing, use the iteration terminal to
return the current loop iteration count. The
iteration terminal is zero-indexed, meaning it
ranges from 0 to n -1. Use Increment to obtain
the true number of loop iterations.

4

If you want to collect the result of each loop
iteration in an array, use an auto-indexing
output tunnel to pass values out of the loop. To
enable auto-indexing for an output tunnel, right-
click the tunnel and select Append Mode » Auto

Tip If you want the loop to execute
once for each element in an array,
wire the array to the loop using an
auto-indexing tunnel instead of
wiring a value to the count terminal.

DAQExpress

© National Instruments 67

Index Values. If you do not enable auto-
indexing, the loop returns only the value from
the last loop iteration.

Troubleshooting

• If the For Loop unexpectedly fails to execute, verify that the value wired to the
count terminal is greater than zero.

• If the execution speed of the loop is too fast, place a Wait node on the subdiagram
of the loop to specify a wait period.

Related concepts:

• Loop Timing

Related tasks:

• Repeating Operations
• Repeating Operations Once for Every Element in an Array
• Repeating Operations until a Condition Occurs

Repeating Operations Once for Every Element in an Array

While working with an array of data, you might want to access individual elements
within the array. Although you can use a combination of Array nodes to accomplish
this task, the For Loop includes an auto-indexing tunnel that you can use to access the
individual elements with minimal additional code.

Use a For Loop with an auto-indexing input tunnel to process one element of an array
during each iteration of the loop. A For Loop with an auto-indexing input tunnel
behaves similarly to a for each loop in other programming languages.

What to Use

For Loop with an auto-indexing input tunnel

DAQExpress

68 ni.com

https://www.ni.com/docs/csh?topicname=for-loop.html

What to Do

Create the following diagram to repeat an operation once for every element in an
array.

Customize the gray sections for your unique programming goals.

1
Place the code you want to repeat on the
subdiagram of a For Loop.

2

When you wire an array to a For Loop, the For
Loop processes one element of the array at a
time. This configuration, known as auto-
indexing, occurs by default. The input tunnel
appears as a white box with brackets to indicate
that it is an auto-indexing tunnel.

Note A For Loop can process
multiple arrays one element at a time
using multiple auto-indexing input
tunnels. In this situation, the loop
uses the smallest array size to
determine the number of loop
iterations. For example, if two auto-
indexed arrays enter the loop with 10
and 20 elements respectively, the
loop executes 10 times, processing all
elements of the first array but only
the first 10 elements of the second
array.

DAQExpress

© National Instruments 69

3

You can access each individual element of the
input array by wiring the auto-indexing tunnel to
the code on the subdiagram of the loop. The
wire entering the auto-indexing tunnel carries
1D array data, whereas the wire leaving the
auto-indexing tunnel carries scalar data.

4

By not wiring a value to the count terminal when
auto-indexing is enabled, the loop automatically
iterates once for each element in the array.

5

If you want to collect the result of each loop
iteration in an array, use an auto-indexing
output tunnel to pass values out of the loop. To
enable auto-indexing for an output tunnel, right-
click the tunnel and select Append Mode » Auto
Index Values. If you do not enable auto-
indexing, the loop returns only the value from

Note For multidimensional input
arrays, the wire leaving the auto-
indexing tunnel carries array data
that is one dimension smaller than
the input array. For example, if the
input array terminal passes a 2D
array to the auto-indexing tunnel, the
wire leaving the auto-indexing tunnel
carries 1D array data.

Note Wiring a value to the count
terminal while auto-indexing is
enabled causes the For Loop to use
the smallest of the choices between
the count terminal and the input
array size to determine the number of
loop iterations. For example, if an
auto-indexed array enters the loop
with 10 elements and you wire a
value of 15 to the count terminal, the
loop executes 10 times.

DAQExpress

70 ni.com

the last loop iteration.

Troubleshooting

• If the For Loop iterates an unexpected number of times, note that if you enable
auto-indexing for more than one input tunnel or if you wire a value to the count
terminal, the actual number of loop iterations becomes the smallest of the
choices.

• If the For Loop processes the entire input array in a single loop iteration instead of
one element per iteration, verify that the input tunnel is auto-indexing the array.
An auto-indexing tunnel appears as a white box with brackets, whereas a non-
indexing tunnel appears as a solid box.

• If the execution speed of the loop is too fast, place a Wait node on the subdiagram
of the loop to specify a wait period.

Related concepts:

• Loop Timing

Related tasks:

• Repeating Operations
• Repeating Operations a Set Number of Times
• Repeating Operations until a Condition Occurs

Loop Timing

Loop timing refers to how long a loop takes to execute a single iteration. The amount
and type of code a loop contains affects its execution speed.

By default, each loop iteration executes as quickly as possible based on the code
inside the loop. However, you might want to change the execution speed of a loop for
one or more of the following reasons.

DAQExpress

© National Instruments 71

Reason to Control Loop
Timing Example Application Procedure

You want to repeat the code
inside a loop and specify a
fixed time interval for each
iteration.

Take a temperature
measurement every
10 minutes.

Adjusting the Execution Speed of a
Loop

You want to reduce the
execution speed of a loop to
make the result of each
iteration more easily visible,
as seen through indicators
on the panel.

Control the rate at which
data values are plotted to a
chart.

Instead of allowing a loop to
execute at full speed,
potentially taking full
control of all of the CPU's
resources, you want to
conserve processing
resources for other tasks.

Yield control of the CPU to
allow other threads, such as
serial or VISA calls, access to
processor resources while
the loop waits.

You want to synchronize the
execution of multiple loops.

Two loops contain sections
of code that take different
amounts of time to run.
Synchronize these loops to
the system clock so that
they begin each iteration at
the same time.

Synchronizing the Execution of
Multiple Loops

Related tasks:

• Adjusting the Execution Speed of a Loop
• Synchronizing the Execution of Multiple Loops

Related information:

• For Loop
• While Loop
• Wait
• Wait Until Next Multiple

DAQExpress

72 ni.com

https://www.ni.com/docs/csh?topicname=for-loop.html
https://www.ni.com/docs/csh?topicname=while-loop.html
https://www.ni.com/docs/csh?topicname=wait.html
https://www.ni.com/docs/csh?topicname=wait-until-next-multiple.html

Adjusting the Execution Speed of a Loop

By default, each loop iteration executes as quickly as possible based on the code
inside the loop. However, you might want to control the rate at which a loop executes
in order to specify a fixed time interval for each iteration, reduce the speed at which an
indicator changes value, or conserve processing resources.

What to Use

• While Loop or For Loop
• Wait

What to Do

Create the following diagram to adjust the execution speed of a loop.

Customize the gray sections for your unique programming goals.

1
Place the code you want to repeat on the
subdiagram of a While Loop or For Loop.

2

To specify the amount of time to wait between
loop iterations, wire the desired time duration
to the input of the Wait node. The Wait node
waits until the value of the operating system's

DAQExpress

© National Instruments 73

https://www.ni.com/docs/csh?topicname=while-loop.html
https://www.ni.com/docs/csh?topicname=for-loop.html
https://www.ni.com/docs/csh?topicname=wait.html

counter increases by an amount equal to the
input you specify.

The total running time of the loop is equal to the
greater of the time it takes to run the code
inside the loop and the wait time you specify.

3

Pressing the stop button does not interrupt the
Wait node. For example, if the user presses the
stop button in the middle of a loop iteration, the
While Loop stops only after the specified wait
period has elapsed and the code inside the loop
has finished executing.

Troubleshooting

If a loop does not execute at the desired rate, verify that you have specified the input of
the Wait node correctly. Consider the following common mistakes:

• If you are converting from another unit of time, verify that your conversion
calculation is correct.

• If your code takes longer than expected to execute, note that the total running time
of the loop is equal to the greater of the time it takes to run the code inside the
loop and the wait time you specify.

Related concepts:

• Loop Timing

Synchronizing the Execution of Multiple Loops

By default, each loop iteration executes as quickly as possible based on the code
inside the loop. However, consider a program that includes multiple loops that contain
code requiring different amounts of time to execute. You might want to control the rate
at which those loops execute in order to synchronize their execution and ensure that
the loops begin each iteration at the same time. Use Wait Until Next Multiple to do this.

DAQExpress

74 ni.com

What to Use

• While Loop or For Loop
• Wait Until Next Multiple

What to Do

Create the following diagram to synchronize the execution of multiple loops.

Customize the gray sections for your unique programming goals.

1

Wire the same value to the inputs of the Wait
Until Next Multiple nodes placed on the
subdiagram of each loop. The loops wait until

DAQExpress

© National Instruments 75

https://www.ni.com/docs/csh?topicname=while-loop.html
https://www.ni.com/docs/csh?topicname=for-loop.html
https://www.ni.com/docs/csh?topicname=wait-until-next-multiple.html

the value of the system clock becomes a
multiple of the specified input before beginning
each iteration. Therefore, the loops begin each
iteration at exactly the same time.

2

When specifying a value for the input of Wait
Until Next Multiple, ensure that the value is
greater than the time required to execute the
code inside the loop. If a loop contains code that
takes longer to execute than the time specified,
Wait Until Next Multiple has no effect on the
execution speed of the loop.

Related concepts:

• Loop Timing

Accessing Data from the Previous Loop Iteration

After a loop completes a single iteration, sometimes you want to use the value of one
of its calculations in the next loop iteration. You can use a shift register to pass data
from the most recent iteration to the next iteration.

What to Use

• For Loop or While Loop
• Shift register

What to Do

Create the following diagram to pass data from the most recent loop iteration to the
next iteration.

Customize the gray sections for your unique programming goals.

DAQExpress

76 ni.com

https://www.ni.com/docs/csh?topicname=for-loop.html
https://www.ni.com/docs/csh?topicname=while-loop.html

1

To share data with the next loop iteration, pass
the data into a shift register on the right border
of the loop. This right shift register passes that
data to a corresponding left shift register.

To create a pair of shift registers, right-click the
loop border and select Create Shift Register.

2

The left shift register contains data passed from
the right shift register. Access this data by wiring
the output of the left shift register to the code
inside the loop.

3

For the first loop iteration, an initialized shift
register returns the value wired to its input.

If you do not initialize the shift register, it shares
the data it held the last time the loop executed,
even if that data is from a previous execution of
the VI containing the loop.

4

After the loop executes, access the data from the
last iteration by wiring the output of the right
shift register to the rest of the program.

Only values from the last iteration exit the loop
through the output of the right shift register.

DAQExpress

© National Instruments 77

Examples

In the previous example, the value the left shift register passes into the loop changes
after each iteration. The following table records the data each shift register contains
after each loop iteration if the initial value wired to the left shift register is 10 and the
loop count is 3.

Shift Register Value after First
Iteration

Value after Second
Iteration

Value after Third
Iteration

Left shift register 10 15 20

Right shift register 15 20 25

Related tasks:

• Accessing Data from Multiple Past Loop Iterations

Accessing Data from Multiple Past Loop Iterations

A shift register passes values from one loop iteration to the next, but sometimes you
need to access values from more than just the previous iteration.

What to Use

• For Loop or While Loop

What to Do

Create the following diagram to pass data from the two most recent loop iterations to
the current iteration.

Customize the gray sections for your unique programming goals.

DAQExpress

78 ni.com

https://www.ni.com/docs/csh?topicname=for-loop.html
https://www.ni.com/docs/csh?topicname=while-loop.html

1

A right shift register always passes data to the
next loop iteration, regardless of whether you
want to share data among one or multiple loop
iterations.

To create a pair of shift registers, right-click the
loop border and select Create Shift Register.

2

After each iteration, the first left shift register
contains the data passed from the right shift
register.

Access this data by wiring the output of the first
left shift register to the code inside the loop.

3
The second left shift register contains the data
from the second most recent iteration.

4

Just like for single shift registers, specify an
initial value for each stacked shift register to
ensure that each one has a predictable value for
the first loop iteration. Each left shift register
that lacks an initial value uses the most recent
value it contained, even if that value is from a
previous loop execution.

DAQExpress

© National Instruments 79

5

After the loop executes, access the data from the
last iteration by wiring the output of the right
shift register to the rest of the program.

Only values from the last iteration exit the loop
through the output of the right shift register.

Examples

In the previous example, the value contained in each shift register changed after each
loop iteration. The following table records the data each shift register contains after
each loop iteration, assuming the following conditions:

• The loop count is 3.
• The initial value wired to the first left shift register is 5.
• The initial value 2 wired to the second left shift register is 2.

Shift Register Note First Iteration
Value

Second
Iteration Value

Third Iteration
Value

First left shift
register

The first left shift register
receives new values from
the right shift register.

5 7 12

Second left shift
register

The second left shift
register receives new
values from first left shift
register.

2 5 7

Right shift
register

The right shift register
receives values from the
subdiagram of the loop.

7 12 19

Related tasks:

DAQExpress

80 ni.com

• Accessing Data from the Previous Loop Iteration

Error Management

When an error occurs in your code, the error is logged in the console. You can manage
errors programmatically.

Automatic Error Management

If an error occurs while your code is running, the program suspends execution and
displays a dialog box with information about the error.

Programmatic Error Management

To collect or process error information while code runs instead of suspending its
execution, use error clusters. You can wire error clusters to diagram objects as shown
in the following table, but these wiring patterns are not exhaustive or required.

Diagram
Object Description Example

Nodes

Many nodes
include error
inputs and
outputs to allow
for
programmatic
error handling.
Consider wiring
these inputs and
outputs to
implement error
handling in your
code, especially
for I/O
operations, such
as file I/O, serial,
instrumentation,
data acquisition,
and

DAQExpress

© National Instruments 81

Diagram
Object Description Example

communication.

As the code
runs, each node
tests for errors
at execution. If
no errors occur,
the node
executes
normally. If
there are errors,
the node that
detects the error
does not
execute and
passes the error
information to
the next node.
The next node
does the same
thing, and so on.
At the end of the
execution flow,
the last node
returns error
information to
the error out
indicator.

Loops

The
condition
terminal of a
loop can accept
an error cluster.
To stop the loop
when an error
occurs, wire an
error cluster to
the condition
terminal. You

DAQExpress

82 ni.com

Diagram
Object Description Example

can also use
Filter Error Code
to stop the loop
when a specific
error occurs.

Case
Structures

The selector
terminal of a
Case Structure
can accept an
error cluster. To
execute different
sets of code
depending on
whether an error
exists, wire an
error cluster to
the selector
terminal. The
Case Structure
automatically
creates two
cases, an error
case and a no
error case.

Related information:

• Debugging Tools

Executing Code Based on a Condition

Use a Case Structure to incorporate decision logic into your program. A Case Structure
contains one or more subdiagrams, or cases, exactly one of which executes when the
structure executes.Case Structures behave similarly to switch statements or if-

DAQExpress

© National Instruments 83

https://www.ni.com/docs/csh?topicname=debugging-tools.html

then-else statements in other programming languages.

What to Use

• Case Structure

What to Do

Create the following diagram to execute different code based on a given condition.

Customize the gray sections for your unique programming goals.

1

Wire the data that you want to use to make a decision to the selector terminal.

The data type of the value you wire to the selector terminal defines the various cases that are
available in the Case Structure. The selector terminal accepts Boolean, string, integer, floating point,
enumerated type, and error cluster data.

2

Use the case selector label to define the various cases in which different code executes.

The case name displayed in the case selector label matches the selector terminal value(s) for which
the corresponding subdiagram executes. You can define each case using a single value or a range of
values. You can also use the case selector label to specify a default case.

3
Place the code you want to execute in each case on the corresponding subdiagram of the Case
Structure.

Tip If you are choosing between only two values based on a Boolean
input, you can use the Select node instead of a Case Structure with a
Boolean selector.

DAQExpress

84 ni.com

https://www.ni.com/docs/csh?topicname=case-structure.html
https://www.ni.com/docs/csh?topicname=select.html

4
To add, duplicate, or delete cases, right-click the border of the Case Structure and select the desired
option from the Cases shortcut menu.

5
To view the different subdiagrams in the Case Structure, click the down arrow on the case selector
label and select the desired case.

6

Every case must provide data to all output tunnels in order for the Case Structure to execute.

If any case does not provide data to an output tunnel, an error occurs, and the output tunnel appears
as a white box with a colored border.

To resolve this error and allow the Case Structure to execute without explicitly wiring all cases, right-
click the unwired output tunnel and select Default If Unwired. The output tunnel returns the default
value for its data type if the subdiagram that executes does not provide that output tunnel with data.
When set to Default If Unwired, the output tunnel appears as a white box with a colored border and a
dash in the center.

When all cases provide data to a particular output tunnel, that output tunnel appears as a solid box.

Troubleshooting

• If the default case executes unexpectedly, verify that the input values wired to the
selector terminal match the values in the case selector label exactly.

• An edit-time error occurs when there are values of the selector data type that do
not correspond to any subdiagram in the Case Structure. You must either define a
default case to handle out-of-range values or create a case for every possible input
value. For example, if the selector is an integer data type and you specify cases for
1, 2, and 3, you must specify a default case to execute if the input value is 4 or any
other unspecified integer value.

Parsing a String into Smaller Pieces

Parsing a string into smaller pieces allows you to perform operations on individual
words or groups of characters in the string. These words or groups of characters are
often referred to as tokens. A token is defined as either the next set of characters that

DAQExpress

© National Instruments 85

appears before a separator character, called a delimiter, or one of a specified set of
operators.

What to Use

• Scan String for Tokens
• While Loop with shift registers

What to Do

Create the following diagram to parse a string into smaller pieces.

Customize the gray sections for your unique programming goals.

1

In order to identify all the tokens in a string, you
must use a While Loop. Inside a While Loop,
Scan String for Tokens scans the entire input
string, returning all tokens it identifies until it
reaches the end of the string. If you do not use
Scan String for Tokens inside a While Loop, the
node stops scanning as soon as it identifies the
first token in a string and returns only that
token.

2
The input string input of Scan String for
Tokens contains the string to scan for tokens.

DAQExpress

86 ni.com

https://www.ni.com/docs/csh?topicname=scan-string-for-tokens.html
https://www.ni.com/docs/csh?topicname=while-loop.html

3

To start each scan at the location within the
string where the preceding scan ended, pass the
offset past token output of Scan String
for Tokens through a shift register and back into
the offset input of the same node.

Initialize this shift register with the location
within the string at which you want to begin
parsing. Use 0 if you want Scan String for Tokens
to begin its operation at the beginning of the
string each time the program runs.

4

Add any strings that you want Scan String for
Tokens to identify as tokens to the operators
input array. The node identifies these strings as
tokens even if they are not surrounded by any
delimiters.

5

Detect the end of the input string by comparing
the token index output of Scan String for
Tokens to -2.

6

Use the auto-indexing output tunnel of the
While Loop to collect the individual tokens in an
array. This array contains all text that appears
between delimiters as well as any strings
specified in the operators input array that are
found in the input string.

Scan String for Tokens does not return
delimiters as tokens but instead uses them to
determine where tokens begin and end.

Troubleshooting

• If Scan String for Tokens does not identify a token that you expect it to identify,

DAQExpress

© National Instruments 87

check to make sure the operators input array does not contain regular
expression notation or any invisible characters. Scan String for Tokens does not
process regular expressions. Also check for correct capitalization of items in the
operators input array, as scanning is case-sensitive.

Examples

input string operators delimiters token string Comment

4>=0 [>, =, >=] \s, \t, \r, \n (default) [4, >=, 0]

If a portion
of the
input
string
ma
mor
one
defined
oper
Sc
String f
Tok
chooses
the long
ma
tok

a==b

c!=d
[==, !=] \s, \t, \r, \n (default) [a, ==, b, c, !=, d]

G2 X0.5Y1.0 i0.5j0 z-0.05 [X, Y, Z, i, j, z] \s, \t, \r, \n (default) [G2, X, 0.5, Y, 1.0, i, 0.5, j, 0, z, -0.05]

This is an
ex
a s
G-c
languag
commonly
used f
machine

DAQExpress

88 ni.com

input string operators delimiters token string Comment

contr
This s
describes
a cir

C1_1.11C2_2.22C3_3.33 None

C, _ (add to delimiters array)

\s, \t, \r, \n (default)
[1, 1.11, 2, 2.22, 3, 3.33]

This is an
ex
a s
from a
DA
with thr
channels.

State Machine Design Pattern

You can use the state machine design pattern to implement decision making
algorithms where a set of distinguishable states exists.

These states, or subdiagrams of code, carry out specific operations within a program.
Only one state executes at a time while the machine is active.

After all of the code within a state executes, the state outputs a transition value and
initiates a state transition. This transition advances the program from the finished
state to the next state indicated by the transition value.

During a state transition, data from the completed state is sent to the upcoming state.
Once the state machine executes its final state, data output by the machine becomes
available for other parts of the program to use.

When to Use a State Machine

A state machine consists of discrete segments of code, otherwise known as states, that
execute one at a time with a transition between each execution.

DAQExpress

© National Instruments 89

The following tasks are examples of situations for which state machines are well
suited:

• Responding to user interface interactions where the user's action determines
which state executes.

• Process testing where each state carries out a step of the process.
• Breaking down difficult to manage applications into smaller, easily maintainable

chunks of code.

However, a state machine is not well suited for every programming situation. If your
program needs to run parallel processes, you may want to choose a different design
pattern.

State Diagrams

To keep track of every state and interaction in your program, design a state diagram of
your state machine before you start programming.

A state diagram is an illustration of all the states in a state machine and how these
states interact with each other. Each circle represents a state, and each arrow
represents a possible state transition. While you create your code, you can follow the
diagram flowchart to recall how to structure the state machine and how the states
within the machine interact.

The following image shows an example of a basic state diagram for a program that
changes the temperature of a room over time.

DAQExpress

90 ni.com

The state diagram shows all possible state transitions in the program. You can use the
state diagram to understand how the states within the program interact before
analyzing the code that defines the interactions.

• Each arrow points toward the endpoint of a state transition. For example, the
initialize state can only transition to the adjust temperature state. On the other
hand, the program can transition back and forth between the adjust temperature
state and wait for event state.

• A circular arrow, seen on the adjust temperature and wait for event states,
indicates that the state can transition to itself.

• A blue arrow indicates that a transition occurs because of a user action, and a
yellow arrow indicates that a transition occurs because of an error in the program.

Standard States To Consider When Planning Your Program

When you design a state machine, create a distinct initialize state for the program. You
can also add a specific state to handle user input or provide custom error handling,
depending on your program needs.

States to Include in Every State Machine You Create

Specify one entry point and one exit point for a state machine to control the code that
executes each time the state machine starts up and shuts down.

• Initialize state—The first state a state machine executes, which includes any
application initialization code. Common uses for initialization code include
opening file references and hardware references to use later and bundling control
references into the data cluster to unbundle later.

A state machine runs continuously until the condition terminal on the While Loop
receives the stop value determined by the user. Directing your state machine toward a
single exit rather than accounting for multiple exit points allows you to control the
shutdown code that executes each time the machine stops. Using a single exit state
also helps prevent accidental, premature, or partial state machine shutdowns.

Note Web applications run infinitely once initialized.

DAQExpress

© National Instruments 91

States to Consider Depending on Your Program Needs

If you are designing a program that implements user interface actions or contains
specialized error handling, consider including these states in your state machine.

• Wait for event state—A state that accepts and implements user input.
• Error handling state—A state that contains error handling code for the state

machine.

Diagram Components of a State Machine

A state machine has four components on the diagram: a While Loop, a Case Structure,
an Enum constant, and a shift register.

1. While Loop—Sets the outer boundary for the state machine code and facilitates
state transitions.

2. Case Structure—Contains a subdiagram for each state in the state machine.
3. Shift register—Passes data from a completed state to the upcoming state.
4. Enum constant—Contains a list of every state in the state machine. The state

machine uses this constant to update the current state transition value as the
program executes.

Note Convert the Enum constant to a G Type and configure its list of values
before using it in your state machine. This ensures that every Enum constant
in your state machine has a consistent list of values that is easy to update.

DAQExpress

92 ni.com

Common State Machine Transition Code

Transition code determines which case to execute in the next While Loop iteration. You
can use the transitions detailed below as a starting point for the transition code in your
program.

Table 1. One State Transition Value

State Transition Example Image

Use an Enum constant
transition when you always
want to transition to a specific
state after the code in the
current state executes.

For example, the Initialize and
Exit states in a state machine
often use an Enum constant
transition.

Table 2. Two State Transition Values

State Transition Example Image

Use a Select node and a
Boolean value to choose
between one of two transition
values.

DAQExpress

© National Instruments 93

Table 3. Three or More State Transition Values

State Transition Example Image

Use a Case Structure transition
when you need to handle a
variety of situations. Add a case
for each transition you need to
program and create transition
code in each case to adjust the
transition value when the case
executes. Each case in the Case
Structure can include a single
transition value or multiple
values that the program must
choose between.

Use a transition array when you
need to choose between more
than two transition values at
one time. At run time, an Index
Array node selects a transition
value from an array constant
containing each possible state
transition value.

DAQExpress

94 ni.com

State Transition Example Image

Use an Event Structure when
you need to change states in
response to a user action in
your program. The Event
Structure monitors the
program for events and
executes a subdiagram of code
when a specific event occurs.
Each event in the Event
Structure can include a single
transition value or multiple
values that the program must
choose between.

For example, the Wait for Event
state in the simple state
machine template uses an
Event Structure.

Best Practices for Creating Projects in G Web Development
Software

To develop projects that successfully serve your needs and the needs of your end
users, refer to the following best practice guidelines:

• File and Project Organization for Projects in G Web Development Software

Note If you need to
perform an action
periodically in the
Wait for Event state,
such as updating a
timer, you can
include an
application timeout
event in the Event
Structure.

DAQExpress

© National Instruments 95

https://www.ni.com/docs/csh?topicname=file-prog-org-lv.html

• Icons and Connector Panes for Projects in G Web Development Software
• Panel Design for Projects in G Web Development Software
• Diagram Design for Projects in G Web Development Software
• Other Best Practices for Projects in G Web Development Software

Related reference:

• File and Project Organization in G Web Development Software
• Icons and Connector Panes for G Web Development Software Projects
• Panel Design for G Web Development Software Projects
• Diagram Design for G Web Development Software Projects
• Localization for LabVIEW NXG Projects
• Other Best Practices for LabVIEW NXG Projects

File and Project Organization in G Web Development Software

Refer to the following table for best practices for organizing files and projects in G Web
Development Software.

Guideline Required or
Recommended? Details Example(s)

Avoid using special
characters in file
names.

Recommended

Using special
characters in file names
can cause compatibility
concerns across
platforms.

Avoid the following:

• File separators such as
colons, forward slashes,
and backward slashes

• Non-alphabetical and
non-numerical symbols,
such as the trademark
symbol

• Punctuation marks,
such as parentheses,
quotation marks,
brackets, and operators

• White space characters,
such as tabs and new
lines

DAQExpress

96 ni.com

https://www.ni.com/docs/csh?topicname=icons-connector-panes-lv-proj.html
https://www.ni.com/docs/csh?topicname=panel-design-lv-projects.html
https://www.ni.com/docs/csh?topicname=diagram-design-lv-projects.html
https://www.ni.com/docs/csh?topicname=misc-best-prac-lv-proj.html

Guideline Required or
Recommended? Details Example(s)

Make sure your project
organization is logical
and easy to use.

Recommended

• Create a
hierarchical
structure with
easily accessible
top-level VIs.

• Place support VIs
in folders within
the project and
group them to
reflect modular
components, such
as instrument
drivers, other
drivers, and
configuration
utilities.

• Limit the number
and the levels of
directories you use
in a project.

N/A

Icons and Connector Panes for G Web Development Software Projects

Refer to the following table for best practices for creating icons and connector panes in
G Web Development Software.

Note You can use
spaces for most
applications, but
avoid using
spaces in a top-
level .gviweb to
create a human-
readable URL.

DAQExpress

© National Instruments 97

Guideline Required or
Recommended? Details Example(s)

Consider using
the well-designed
icons in the G
Web
Development
Software libraries
as prototypes for
your icon.

Recommended

If you cannot find or
create a picture to use
for an icon, you can use
text.

N/A

Create a uniform
icon style for all
related VIs.

Recommended

A uniform style helps
users visually determine
which subVIs are
associated with a top-
level VI.

N/A

Avoid using
colloquialisms
when making
icons.

Recommended

Colloquialisms, even in
pictures, are difficult to
translate. Users that
speak languages other
than English may not
understand a picture
that relies on cultural
background knowledge.

If you represent a data logging VI
with a picture of a lumberjack,
some users may not know the
cultural reference to understand
how a lumberjack can represent
data logging.

Create a
meaningful icon
for every VI.

Recommended

The icon represents the
VI on a palette and
diagram. Well-designed
icons help users gain a
better understanding of
the subVI without the
need for excess
documentation.

N/A

DAQExpress

98 ni.com

Guideline Required or
Recommended? Details Example(s)

Consider
common node
sizes in LabVIEW
NXG when
designing an icon.

Recommended

Refer to the following
common node sizes:

• 30x30 for small
nodes. This size
supports the 3-1-1-3
connector pane
pattern.

• 40x40 for the default
VI size. This size
supports the 4-2-2-4
connector pane
pattern.

• 50x50 for the default
size used by NI
hardware driver and
Advanced Analysis
Library APIs. This
size supports the
5-3-3-5 connector
pane pattern.

N/A

Make sure to set
inputs and
outputs for each
subVI as required,
recommended, or
optional in the
connector pane
for that subVI,
and make sure
the settings make
sense for your
project.

Recommended

Use the Usage settings
on the Item tab for the
connector panes of all
subVIs to specify the
input and output
settings for each subVI.

The Usage setting for
connector pane
terminals affects the
appearance of the inputs
and outputs in the
Context Help and
reminds users to wire
subVI connections.

N/A

DAQExpress

© National Instruments 99

Guideline Required or
Recommended? Details Example(s)

Use the required setting
for inputs that users
must wire for the subVI
to run properly. Use the
optional setting for
inputs that have default
values that are
appropriate for the subVI
the majority of the time.
Use the recommended
setting for all other
inputs.

Assign inputs and
outputs according
to the way a user
will eventually
wire VIs together.

Recommended

Wire inputs on the left
and outputs on the right
of the connector pane
because standard data
flow moves from the left
to the right.

Consistency between the
location you assign
inputs and outputs in the
connector pane and their
location in the actual
data flow promotes ease
of use and reuse.

• If you create a group of
subVIs that you often use
together, give the subVIs a
consistent connector pane
with common inputs in the
same location to help you
remember where to locate
each input.

• If you create a subVI that
produces an output that
another subVI uses as an
input, such as references,
task IDs, and error clusters,
align the input and output
connections to simplify the
wiring patterns.

• Assign two inputs of a VI to
the left two terminals of the
corresponding connector
pane and two outputs of that
VI to the right two terminals
of the corresponding
connector pane.

DAQExpress

100 ni.com

Guideline Required or
Recommended? Details Example(s)

Reserve the
bottom left and
right connector
pane terminals
for the error input
and error output.

Recommended

Session-based APIs are
the only exception to this
recommendation. For
session-based APIs, you
can place error inputs
and outputs directly
beneath session and
reference inputs and
outputs.

N/A

Avoid creating
connector panes
with more than 16
terminals.

Recommended

Including too many
terminals can make a
subVI difficult to
understand. You can
consider either splitting
the functionality of the
subVI into multiple
subVIs or using clusters
to create logical
groupings of the inputs
to the subVI, depending
on which solution makes
sense for your project.

N/A

If your subVI
includes a pass-
through input and
output pair, add
an in suffix to the
control and an
out suffix to the
indicator.

Recommended

Adding these suffixes to
pairs of inputs and
outputs indicates a
relationship between the
inputs and outputs.

If you name an input reference in,
name the related output
reference out.

If your subVI
includes a pass- Recommended You can exclude

references from this N/A

DAQExpress

© National Instruments 101

Guideline Required or
Recommended? Details Example(s)

through input and
output pair, and
you wire the
control directly to
the indicator on
the diagram to
prevent the value
from changing,
remove the
indicator from the
connector pane.

guideline.

Related information:

• Configuring an Existing VI for Use As a SubVI
• Creating a SubVI

Panel Design for G Web Development Software Projects

Refer to the following table for best practices for designing panels in LabVIEW NXG

Guideline Required or
Recommended? Details Example(s)

Avoid using all capital
letters in labels or panel
documentation.

Recommended

Capital letters can
make text seem more
important than
necessary.

N/A

Position the panel in the
top left, spatially even
with the controls
palette.

Recommended

If you position the
panel in the top left,
you can prevent the
user from opening the

N/A

DAQExpress

102 ni.com

https://www.ni.com/docs/csh?topicname=configure-vi-as-subvi.html
https://www.ni.com/docs/csh?topicname=creating-a-subvi.html

Guideline Required or
Recommended? Details Example(s)

panel to a position that
is potentially off the
screen or otherwise
difficult to see and
read.

Display the labels of all
controls and indicators
on the panel.

Recommended

Make sure the labels of
all controls are
meaningful to increase
clarity and ease of use
for users.

N/A

Set reasonable default
values for controls.

Recommended

Make sure the default
values you set do not
generate errors when
you run the top-level
VI.

N/A

Note Default
values you
set for
controls
automatically
append to
the terminal
name. The
Context Help
displays the
default value
when you
hover over
the control.

Note When
possible,
avoid
setting
default
values for
indicators
such as
graphs,
arrays, and
strings.
Setting
default
values for
those types
of
indicators

DAQExpress

© National Instruments 103

Guideline Required or
Recommended? Details Example(s)

Use default values
strategically and
logically.

Recommended

Planning the use of
default values can save
space and simplify
code.

N/A

Avoid displaying labels
on the panel for buttons
that display Boolean
text.

Recommended

Only display the
Boolean text for these
buttons.

N/A

Format any text on your
panel appropriately. Recommended

• Use default fonts
when possible.

• When the
N/A

wastes disk
space when
you save
the VI.

Note If you
click the
boolean
text of a
checkbox,
the value of
that
checkbox
toggles. The
value of
that
checkbox
does not
toggle if you
click the
label.

DAQExpress

104 ni.com

Guideline Required or
Recommended? Details Example(s)

alignment of
characters is
critical, use
monospace fonts
for string controls
and indicators,
and space the
characters equally.

• For free labels,
only use carriage
returns to
separate
paragraphs.

• Resize labels to
enable word
wrapping.

• Include extra
space in free
labels to allow for
longer or larger
strings due to font
differences in
localized
languages.

Group and arrange
controls logically and
aesthetically.

Recommended

• Consider the
arrangement of
controls on
panels, and keep
panels simple to
avoid confusing
users.

• For top-level VIs
that users can see,
place the most
important controls
in the most

N/A

DAQExpress

© National Instruments 105

Guideline Required or
Recommended? Details Example(s)

prominent
positions.

• For subVI panels,
place controls and
indicators of the
subVI to
correspond with
the connector
pane pattern.

Use the Align and
Distribute options in the
Layout pull-down menu
to create a uniform
layout.

Recommended N/A N/A

Visually group objects Recommended • Use decorations N/A

Note
Regardless
of the
location of
the error
cluster
connector
pane
connection,
place error
cluster
controls
and
indicators
at the
bottom of
the panel.

DAQExpress

106 ni.com

Guideline Required or
Recommended? Details Example(s)

with related functions.

from the Drawings
palette.

• Use clusters to
group related
data. Avoid using
clusters for only
aesthetic
purposes.

Configure path inputs
and outputs
appropriately.

Recommended

• Use path controls
instead of string
controls to specify
the location of
files or directories.
Path controls and
indicators work
similarly to
strings, but the
software formats
paths using the
standard syntax
for the platform
you are using.

• Avoid hiding the
Browse button on
path controls.

• Set the browse
action correctly for
the Browse button
on path controls in
the Item tab.

If you set a browse action in
which a user needs to select
a directory, select Select
Folder from the Action
drop-down menu in the
Item tab.

Determine whether an
enum or ring is more
effective than a Boolean.

Recommended

An enum may be more
efficient in cases where
two states may
increase to more

N/A

DAQExpress

© National Instruments 107

Guideline Required or
Recommended? Details Example(s)

states.

Arrange items in a
cluster vertically. Recommended

To arrange items
vertically, select
Vertical from the
Arrange drop-down
menu in the Item tab.

N/A

Use imported graphics
to enhance the panel.

Recommended

Import graphics and
text objects to use as
panel backgrounds by
dropping URL Image
from the Decorations
palette and navigating
to the image on the
Item tab.

N/A

Use color logically,
sparingly, and
consistently, if at all.

Recommended

• Never use color as
the sole indicator
of device state.

• Use a minimal
number of colors,
emphasizing
black, white, and
gray. Color can be
difficult to discern
or distract the user
from important
information.

• Use light gray,
white, or pastel
colors for
backgrounds. Use
bright,

• A yellow, green, or
bright orange
background makes it
difficult to see a red
danger light.

• People with some
degree of color-
blindness can struggle
to detect certain color
changes. You can
upload an image of your
panel to an online color
blindness simulator to
test your panel under
various degrees of color
blindness.

Note This
guideline is
specific to
user
interfaces.

Note This
guideline is
specific to
user
interfaces.

DAQExpress

108 ni.com

Guideline Required or
Recommended? Details Example(s)

highlighting colors
only when a term
is important, such
as an error
notification.

• Because multi-
plot graphs and
charts can lose
meaning when
displayed in black
and white, use
different plot
styles, such as
dots, and dashes,
in addition to
color to further
differentiate
multiple plots.

Diagram Design for G Web Development Software Projects

Refer to the following table for best practices for designing diagrams in G Web
Development Software.

Guideline Required or
Recommended? Details Example(s)

Use a type definition
when you use the
same unique control in
more than one
location or when your
project includes a large
data structure that
passes between

Required

A type definition
automatically
propagates changes to
the control or data
structure throughout
all relevant VIs and
subVIs.

N/A

DAQExpress

© National Instruments 109

Guideline Required or
Recommended? Details Example(s)

several subVIs.

Select Autosize list
view in the Item tab for
any properties nodes,
such as Cluster
Properties or
Waveform Properties.

Required

The Autosize list view
option ensures that all
element names are
fully visible.

N/A

Make sure that data
flows from left to right
and that wires enter
the diagram from the
left and exit to the
right.

Recommended

Although the positions
of program elements
do not determine
execution order,
avoiding right-to-left
wiring helps users read
and comprehend the
diagram. N/A

Avoid creating any
backwards wires. Recommended

Wires that cause data to
flow from right to left
contradict style best
practices.

N/A

For subVIs and top-
level VIs that do not
contain loops, place

Recommended
Placing controls and
indicators in these
positions increases

N/A

Note Only
wires and
structures
determine
execution
order.

DAQExpress

110 ni.com

Guideline Required or
Recommended? Details Example(s)

controls on the far left
and indicators on the
far right.

readability and
usability by giving users
a familiar and expected
location to look for the
controls and indicators.

For non-user interface
subVIs, make sure all
controls and indicators
that are on the
connector pane also
reside on the top-level
diagram.

Recommended N/A N/A

When you use
enumerated type
constants, always
create G Types of those
constants.

Recommended

• Enumerated type
constants are
useful for making
diagram code
easier to read.
When you wire an
enumerated type
constant to a Case
Structure, the
string labels
appear in the
selector label of
the Case Structure.

• G Types prevent
you from needing
to rewrite code
each time you add
or remove an item
from an
enumerated type
constant.

N/A

DAQExpress

© National Instruments 111

Guideline Required or
Recommended? Details Example(s)

Use a docked constant
if the only purpose of
the constant is to
define a data type and
the value is
unimportant.

Recommended

Docked constants that
contain meaningful
values can inhibit the
readability of the
diagram. If a docked
constant is set to the
default value, it will
appear hollow. If any
other value is used, it
will be a solid color.

N/A

If you display the list
view of a node, make
sure the entire name of
the longest item in the
node is visible.

Recommended
Also, resize the node for
shorter names to
reduce any extra space.

N/A

Use list view for all
nodes imported with
the Jenkins Shared
Library Interface (JSLI)
document type, and
show the node label.

Recommended

List view helps users
distinguish between
JSLI nodes and subVI
nodes and also
improves readability.

N/A

If you wire an enum to
a Case Structure, make
sure none of the cases
are marked as the
default case.

Recommended

One exception to this
guideline is if the Case
Structure only operates
on one or a small
number of the overall
number of items in the
enum.

N/A

If you wire a ring, Recommended Removing additional See the Case Values of a

DAQExpress

112 ni.com

Guideline Required or
Recommended? Details Example(s)

string, or numeric to a
Case Structure, remove
any additional values
from the string in the
Case Selector Label.

values increases clarity.
Case Structure section
following this table for a
visual example.

If possible, avoid using
ellipsis notation for
enum values.

Recommended

Enumerate all the
values so that if you
add a new value later,
the diagram breaks and
you can consciously
handle the new enum
value. Use range
notation sparingly.

N/A

If your VI includes its
own clusters or enums
on the diagram, define
them with type
definitions.

Recommended

Type definitions allow
you to manage these
data types in one place
and ensure that any
changes you make to a
data type propagate
across all relevant VIs
and subVIs.

N/A

Use comments to
document the
functionality of your
code.

Recommended N/A N/A

Reference applicable
VIs in comments
instead of showing the
labels on all subVIs in a

Recommended

When you display
object labels, you
cannot reposition
them, so your diagram

N/A

DAQExpress

© National Instruments 113

Guideline Required or
Recommended? Details Example(s)

diagram. width must increase
unnecessarily.

Consider whether or
not your VI needs an
error Case Structure
surrounding its
contents.

Recommended

If the error Case
Structure is not
handling critical
running code, consider
simply passing the
error wire through all
diagram nodes without
creating a case around
the whole diagram.

You may want to use an
error case if your VI is
manipulating the error
cluster at all. Using an
error case allows you to
case out the relevant
diagram so that your
error manipulation
code does not modify
any error entering the
VI.

High iteration loops and
modal dialogs are examples
of critical running code.

Arrange diagrams so
that the primary wire
travels in a straight line
between nodes.

Recommended
The primary wire is
typically a reference or
error wire.

N/A

Keep approximately 20
pixels of white space
between objects.

Recommended

An overcrowded
diagram without
adequate white space
is difficult to read.

N/A

DAQExpress

114 ni.com

Guideline Required or
Recommended? Details Example(s)

Expand array constants
to display all array
elements, plus one
empty element at the
end.

Recommended

Displaying all array
elements with an
empty space at the end
helps users see the
entirety of the array. If
you do not have
enough space for a
large array constant,
display the scrollbar.

N/A

Use a comment to
label long wires and
identify their use.

Recommended

Wire comments are
useful for identifying
and describing wires
that come from shift
registers and long wires
that span the entire
diagram.

N/A

Avoid bending wires
when possible, and
keep wires short.

Recommended

Wires with long,
complicated paths are
difficult to follow.

N/A

Align and distribute
nodes, terminals, and
constants.

Recommended

When you align and
distribute objects
evenly, you can use
straight wires to
connect objects and

N/A

Note Avoid
replacing
long wires
with local or
global
variables.

DAQExpress

© National Instruments 115

Guideline Required or
Recommended? Details Example(s)

create readable
diagrams.

Avoid placing diagram
objects, such as subVIs
or structures, on top of
wires, and avoid
placing any wires
under diagram objects
because the software
can hide certain
segments of the
resulting wire.

Recommended

Draw wires so that you
can clearly see if a wire
connects to a terminal.
Avoid wiring through
structures if the
structure does not use
the data in a wire.

N/A

Make sure control and
indicator terminals on
the connector pane do
not reside inside
structures on the
diagram.

Recommended

The development
environment can
optimize subVI
execution time when all
controls and indicators
on the connector pane
reside on the top-level
diagram of the VI.

N/A

Save the VI with the
most important frame
of multi-framed
structures, such as a
Case Structure,
displayed.

Recommended

Saving the VI with the
most important case
displayed increases
readability because the
user does not have to
switch cases
immediately.

If you open a diagram and
the error case that wraps the
entire diagram is displayed
first, you must switch to the
no error case to see the
actual diagram code.

Maximize the
performance of code Recommended When a program has

large arrays or critical
Array data types can affect
the memory usage of an

DAQExpress

116 ni.com

Guideline Required or
Recommended? Details Example(s)

on the diagram.

timing problems, you
can use the following
guidelines to maximize
the performance of the
VI:

• If possible, avoid
building arrays
using Build Array
within a loop
because the node
makes repetitive
calls to the
memory manager.
Instead, use auto-
indexing or pre-
size the array and
use Replace Array
Subset to place
values in the array.
Also avoid using
Concatenate
Strings with strings
because, in
memory, the
software handles
strings as arrays of
characters.

• Choose the proper
array data type to
control the
memory usage of
the application.

• Display only
necessary
information on the
panel. Send data to
indicators only if

application. For example, if
your double-precision,
floating-point array of
100,000 values is actually
storing single-precision,
floating-point values, you are
using memory inefficiently.
In this case, use an array of
single-precision, floating-
point values to match the
data type stored in the array
and reduce the memory
usage.

DAQExpress

© National Instruments 117

Guideline Required or
Recommended? Details Example(s)

the data is
different from
what the indicator
already displays.
Frequently
updating panel
indicators with
new data can
affect the
performance of the
VI, especially if you
display large
amounts of data in
graphs or charts.

If your VI includes
several I/O name
controls, such as
Waveform and Digital
Waveform, that are
stacked vertically,
configure them to not
show type.

Recommended

If you set I/O name
controls to not show
their type, you can
maximize information
density and avoid
overlapping the
controls.

N/A

Case Values of a Case Structure

Localization for LabVIEW NXG Projects

Refer to the following table for best practices for localization in LabVIEW NXG.

DAQExpress

118 ni.com

Guideline Required or
Recommended? Details Example(s)

Position plot legends
to avoid any potential
overlaps.

Required

Plot legends expand to
the right when plot
names grow due to
larger system fonts or
longer localized text.

N/A

On the panel, check for
consistent placement
of control labels, and
allow for extra space
between controls to
prevent labels from
overlapping objects
due to localization
concerns.

Required N/A

• If you place a label
on the left of an
object, make sure
to justify the label
to the right and
create some space
to the left of the
text.

• If you center a
label over or under
an object, make
sure to center the
text of that label
as well.

On the diagram, create
extra space inside free
labels to account for
longer or larger strings
due to font differences
and localization.

Required N/A N/A

If you localize a project
or library that contains
icons with text, make
sure you also localize
the text on the icon.

Required N/A N/A

DAQExpress

© National Instruments 119

Guideline Required or
Recommended? Details Example(s)

Create extra space in
areas of a panel or
diagram where text
may grow due to larger
system fonts or
localized text.

Required N/A

You can leave extra
white space for control
and indicator labels to
potentially grow in
size.

See the Spacing for
Panels and
Diagrams section
following this table for
a visual example.

Avoid using enums in
shipping content if
possible.

Required

Although enum labels
on the panel and
diagram are localized,
individual enum items
are not.

N/A

Spacing for Panels and Diagrams

Other Best Practices for LabVIEW NXG Projects

DAQExpress

120 ni.com

Refer to the following table for LabVIEW NXG best practices.

Guideline Required or
Recommended? Details Example(s)

Avoid using absolute
paths in VIs. Required

Absolute paths may
cause problems when
you build an
application or run the
VI on a different
computer. If you must
use an absolute path,
make sure that you
include code to test
that the path exists and
to create the path if it
does not exist.

N/A

Best Practices for Designing and Developing an Application
Programming Interface (API) in G Web Development Software

To develop an API to distribute to other users that is consistent with NI style
recommendations for G content, refer to the following best practice guidelines:

• File Organization and Node Naming
• Component Organization
• Icons and Connector Panes
• Panel Design
• Data Type Selection
• Palette Taxonomy
• Documentation
• Error Message Design
• API Design

You also need to follow the Best Practices for Designing and Developing Projects in G
Web Development Software if you want your API to be consistent with NI best practice
recommendations for G content.

DAQExpress

© National Instruments 121

https://www.ni.com/docs/csh?topicname=file-organization-api.html
https://www.ni.com/docs/csh?topicname=component-organization-api.html
https://www.ni.com/docs/csh?topicname=icons-connector-panes-api.html
https://www.ni.com/docs/csh?topicname=panel-api.html
https://www.ni.com/docs/csh?topicname=data-type-selection-api.html
https://www.ni.com/docs/csh?topicname=palette-taxonomy-api.html
https://www.ni.com/docs/csh?topicname=documentation-api.html
https://www.ni.com/docs/csh?topicname=error-messages-api.html
https://www.ni.com/docs/csh?topicname=api-design.html

Throughout this section, the term required refers to a guideline that NI requires
when designing an API. The term recommended refers to a guideline that NI
suggests when designing an API.

File Organization and Node Naming for Distributed APIs

Refer to the following table for best practices for organizing files and naming nodes.

Guideline Required or
Recommended? Details Example(s)

Use title case. Required

Capitalize the following
in subVI names:

• The first and the
last word

• All nouns,
pronouns,
adjectives, verbs,
adverbs, and
subordinate
conjunctions (as,
because,
although)

General Error Handler,
not General error
handler

Capitalize the second
part of a hyphenated
compound.

Required N/A
Fixed-Point, not Fixed-
point

Do not capitalize
articles (a, an, the),
coordinate
conjunctions (and, or,
nor), or prepositions
regardless of length,
unless they are the first

Required

Boolean operators are
an exception. Write
Boolean operators,
such as AND and OR,
in all capital letters.

Search and Replace, not
Search And Replace

DAQExpress

122 ni.com

Guideline Required or
Recommended? Details Example(s)

or last word.

Do not capitalize to in
an infinitive phrase
unless to is the first
word node name.

Required N/A
Path to String, not Path
To String; To String, not
to String.

Use industry-standard
capitalization for an
engineering or
scientific term.

Required N/A
PolyBezier, not
Polybezier

Write acronyms in all
capital letters. Required N/A FIFO, not Fifo, URL, not Url

Use spaces between
words. Required N/A

Feedback Node, not
FeedbackNode

Do not use special
characters. Required

Boolean operators are
an exception. Use a
question mark (?) for
node names when the
primary output is
Boolean, such as
Equal?, not Is Equal.

Search and Replace, not
Search & Replace

Make sure none of the
nodes or VIs in your API
share the same name
with a node or VI that

Required

Unique node and VI
names in an API make
unique palette object
names for Quick Drop
users.

N/A

DAQExpress

© National Instruments 123

Guideline Required or
Recommended? Details Example(s)

is already in the
LabVIEW NXG palettes.

Do not use the
forbidden word,
Example, in the
names of your API
nodes or VIs.

Required N/A N/A

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Related reference:

• File and Project Organization in G Web Development Software

Component Organization for Distributed APIs

Refer to the following table for best practices for organizing components.

Guideline Required or
Recommended? Details

Set the Exported or Non-exported designation
of the VIs in your API appropriately.

Required

The Exported
designation indicates to
users which VIs are
guaranteed to have a
consistent interface.

Mark a VI as Exported only if it is a public member
of your API.

Required Mark a VI as Exported.

DAQExpress

124 ni.com

Guideline Required or
Recommended? Details

If a G Type is on the connector pane of an exported VI
in your API, also mark that G Type Exported. Required N/A

Follow the namespacing guideline
[Company].[Product].[Component].gcomp
for your API component.

Required

For example, NI.G
Core.Data
Type.gcomp is a
component NI owns, part
of the G Core product (in
other words, the core
libraries that compose
the G language), and
these VIs pertain to
parsing Data Types.

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Icons and Connector Panes for Distributed APIs

Refer to the following table for best practices for creating icons and connector panes.

Table 4. Guidelines for SubVI Size

Guideline Required or
Recommended? Details

Make all VIs or as many VIs as
possible the same size. Required

The icon size is determined by the
connector pane pattern that the
subVI requires. Refer to the icon
and connector pane guidelines in
Icons and Connector Panes for G
Web Development Software
Projects for more information.

When resizing a VI, expand it in Required The direction a VI can stretch
depends on error input and output

DAQExpress

© National Instruments 125

Guideline Required or
Recommended? Details

one direction.

location on the connector pane.

• If the error input and output
are beneath the instrument
handles, as with driver APIs,
vertically expand the VI.

• If the error input and output
are on the lower-left or lower-
right of the node, horizontally
expand the VI.

Increase the size of the entire API
to be more consistent, if necessary.

Table 5. Guidelines for Iconography

Guideline Required or
Recommended? Details Example(s)

Make the node size big
enough to
communicate its
functionality through
an icon.

Required
The icon should
communicate node
behavior.

N/A

Make consistent
iconography for all the
VIs in your API.

Required

Default glyphs are in
the G Web
Development Software
project on the Icon tab.
You can use the default
glyphs as a starting
point in your VIs.

N/A

DAQExpress

126 ni.com

Table 6. Guidelines for Interface Elements

Guideline Required or
Recommended? Details Example(s)

Include pass-through
wires in the upper
corners of a VI only if it
is part of a reference-
based API.

Required

A reference value is not
modified during
execution, so passing it
through VIs in an API is
convenient. A VI could
potentially modify a
data value, in other
words, any wire that is
not a reference or a
cluster/class of
references, if it is
passing through. Pass
data values through VIs
only if the VI might
modify the value of the
wire.

Reference-based APIs in G
Web Development Software
include queue and HTTP.

Either coerce numeric
inputs into a range that
your code expects, or
handle out-of-range
values with an error
condition or warning.

Required
Do not configure data
limits for numeric
controls.

If you specify the speed of a
motor, and the motor can go
only 0-100 mph, make sure
you are either coercing the
input value with an In Range
and Coerce function to be
within 0-100, or return an
error if you specify a value
outside that range.

Use lower case for
input and output
names.

Required N/A

Use: exported waveform

Do not use: Exported
Waveform

Use input and output
names that are easy to
understand.

Required N/A
Use: remainder

Do not use: x-y*floor(x/y)

DAQExpress

© National Instruments 127

Guideline Required or
Recommended? Details Example(s)

Name inputs and
outputs consistently. Required N/A

For three inputs that have
the same data type and
source type, use: task in,
task in, task in.

Do not use: task in,
myDAQ task in, myDAQ
resource in

Use simple words, not
symbols. Required N/A

Use: number of samples

Do not use: # of samples

Use a question mark
(?) for input and output
names when the data
type is Boolean with an
implied question.

Required N/A
Use: UTC?

Do not use: is UTC

Do not use a question
mark (?) for Boolean
inputs and outputs
that are commands.

Required N/A
Use: reset

Do not use: reset?

Do not include default
values in parentheses. Required

Set default values in
the configuration
panel. G Web
Development Software
automatically appends
the default values to
the label.

Use: max characters per
row

Do not use: max
characters/row (no
limit:0)

DAQExpress

128 ni.com

Guideline Required or
Recommended? Details Example(s)

Do not include units of
measure in
parentheses.

Required

Set units in the
configuration panel. G
Web Development
Software automatically
appends the units to
the label.

Use: delay time

Do not use: delay time (s)

Make sure the names
of inputs and outputs
of your VIs use
complete English
words, unless users
worldwide know an
abbreviation.

Required N/A N/A

If you use the top or
bottom inputs and
outputs on the
connector pane, make
sure their wires never
cross each other.

Required N/A

See the Avoid Crossing
Wires section at the end of
this table for a visual
example.

Assign the input and
output terminals on
the connector pane in
a way that simplifies
the wiring diagram.

Required

Consider how users
might wire the VIs
together when you
assign terminals. Align
the output terminals
with the corresponding
input terminals.

N/A

If multiple VIs in your
API have the same
input or output, place

Required N/A
See the Locate Inputs and
Outputs Consistently
section at the end of this

DAQExpress

© National Instruments 129

Guideline Required or
Recommended? Details Example(s)

all similar inputs and
outputs in the same
location on the
connector pane of all
VIs.

table for a visual example.

Do not leave any
terminals of your
public API VIs in the
unplaced items tray.

Recommended

When all controls/
indicators are on the
panel, the user can
open the panel of your
VI and see input and
output values during
debugging.

N/A

Set the display format
of numeric controls
and indicators to
produce reasonable
format settings for
controls and indicators
that users create from
them.

Recommended

The display format
settings of a source
numeric control or
indicator are passed on
to any controls and
indicators created from
them.

N/A

Avoid Crossing Wires

DAQExpress

130 ni.com

Locate Inputs and Outputs Consistently

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Related reference:

• Icons and Connector Panes for G Web Development Software Projects

Panel Design for Distributed APIs

Refer to the following table for best practices for designing panels.

Guideline Required or
Recommended? Details

Use the flat style without shadows
for controls and indicators on the
panels of your public API VIs.

Required

Create a consistent style for users
when they create controls and
indicators from the inputs and
outputs of your VIs.

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Related reference:

• Panel Design for G Web Development Software Projects

Data Type Selection for Distributed APIs

DAQExpress

© National Instruments 131

Refer to the following table for best practices for selecting data types.

Guideline Required or
Recommended? Details Example(s)

For numeric input or
output values, use
double-precision for
floating-point values
and I32 for integer
values unless there is a
specific reason to use
another type.

Required N/A N/A

Always use an error
cluster for reporting
error conditions. Never
use an error code or
error Boolean output
by itself.

Required

G Web Development
Software has a single
Error API for error
handling. If API VIs do
not use the error cluster
to convey error
information, you
cannot use the Error
API for handling errors.

N/A

Use a text ring only for
parameters that have a
natural association to
several discrete
possibilities and no
numeric content.

Recommended

An exception for
numeric content is if
the set of valid values is
sufficiently small.

Examples of discrete
possibilities without numeric
content are days of the week,
months of the year, make
and model of car.

An example of numeric
content that would be an
exception is the number of
connected devices within a
finite number of
connections. It's better for a
user to pick a value of 0, 1, 2,
3 from a ring control than to
instead have a numeric
control and need to make
sure the specified value is in

DAQExpress

132 ni.com

Guideline Required or
Recommended? Details Example(s)

range.

If you use text rings for
numeric content, do
not create an item with
text that represents a
different numeric
value.

Recommended N/A
For example, a selection of 2
assigned to the value 0 could
confuse the user.

Use the timestamp
data type for time
values in your API.

Recommended N/A N/A

Use a double-precision
value to specify the
number of seconds for
timeout values in your
API. Use -1 to indicate
that the diagram
object has no timeout
limit.

Recommended N/A N/A

Use the waveform data
type when your VI
acquires or generates
analog waveforms.

Recommended N/A N/A

If your VI has a string
input or output,
consider whether
another data type,
such as an enum,

Recommended N/A

If the user needs to pick a
day of the week, an enum
with the seven days in it is
easier to use than typing the
name of the day as a string,
because of possible
problems with the case,

DAQExpress

© National Instruments 133

Guideline Required or
Recommended? Details Example(s)

might make your API
easier to use. spelling, and abbreviation.

If you use a cluster as
an input or output of
your VI, make sure the
cluster logically groups
parameters.

Recommended

Do not use clusters only
to reduce the number
of inputs and outputs
on your VI, because
clustering things
unnecessarily to reduce
the number of inputs to
the VI is not a logical
organization.

N/A

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Palette Taxonomy for Distributed APIs

Refer to the following table for best practices for palette taxonomy.

Guideline Required or
Recommended? Details Example(s)

Make the root palette
easy to browse. Recommended

Seven to 10 categories
allows for full-size icons
in a single-column
layout.

N/A

Design a structure that
can expand beyond the
original size of the root
palette for nodes you

Recommended N/A N/A

DAQExpress

134 ni.com

Guideline Required or
Recommended? Details Example(s)

may develop in the
future.

Make palettes for
similar categories
consistent.

Recommended N/A

Across different palettes,
such as numeric, string, file,
and so on, that have a
constants palette, similarly
organize all the constants
palettes.

Add synonyms or
keywords to your
palettes to improve the
findability of your VIs.

Recommended N/A

Mathematicians commonly
refer to the functionality of
the Quotient and Remainder
node as mod. Make sure
mod is a keyword for
Quotient and Remainder so
that a search for mod
returns that node.

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Documentation for Distributed APIs

Refer to the following table for best practices for documenting an API.

Guideline Required or
Recommended? Details

Review the VI description and parameter descriptions
of all public VIs in your API for correct meaning for Required N/A

DAQExpress

© National Instruments 135

Guideline Required or
Recommended? Details

what the VI does, usability by third parties who are
unfamiliar with your API, spelling, grammar, and
naming conventions for G Web Development
Software.

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Error Message Design for Distributed APIs

Refer to the following table for best practices for designing error messages.

Guideline Required or
Recommended? Details

Reserve a range of error codes for
your API and use those codes for
error conditions specific to your
API.

Required

Pick a range for error codes
between -8999 through -8000, 5000
through 9999, and 500,000 through
599,999, which are reserved for
external users.

When generating or manipulating
errors on the diagram of your API
VIs, make sure you use the Error
API to construct and manipulate
error clusters.

Required
Never bundle or unbundle error
cluster elements directly in G Web
Development Software.

If the VI has no way to generate
errors, consider excluding error
inputs and outputs.

Recommended

If a VI does not generate errors,
users of the VI can take advantage
of parallelism in G Web
Development Software.

DAQExpress

136 ni.com

Guideline Required or
Recommended? Details

If you exclude error inputs and
outputs on a VI in your API, leave
the error input and output
locations on the connector pane
empty.

Recommended

When unused error inputs and
outputs on a VI are left empty, you
can add error handling to the VI
later.

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

API Design for Distributed APIs

Refer to the following table for best practices for designing VIs.

Guideline Required or
Recommended? Details Example(s)

Include every public VI
in your API in the API
palette.

Required

Users may not look on
disk to find advanced
VIs. If a VI is not ready
or intended for public
consumption, make the
VI private in the API
component.

N/A

Do not use a VI in your
API to open a dialog
box unless that is the
stated intent of the VI.

Required N/A N/A

If you expect multiple Recommended
If the VI stores any
internal state in
feedback nodes or

N/A

DAQExpress

© National Instruments 137

Guideline Required or
Recommended? Details Example(s)

calls of your API VI to
run in parallel,
consider making the VI
reentrant.

uninitialized shift
registers, make the VI
reentrant and stateful,
such as a preallocated
clone. If the VI doesn't
store any internal state,
make it stateless, as a
shared clone.

Related concepts:

• Best Practices for Designing and Developing an Application Programming Interface
(API) in G Web Development Software

Interfaces for MATLAB

An Interface for MATLAB (.mli) is a document in which you define calls to a
MATLAB file (.m or .mlx) in your G dataflow application.

MATLAB files can be either functions or scripts. NI recommends that you format
MATLAB programs into functions because functions perform better than scripts and
offer a clean programming model.

In an Interface for MATLAB, you create interface nodes that map to arguments in a
MATLAB function or variables in a MATLAB script. Visual representations of interface
nodes appear on the Project Item » Software palette on the diagram. You can place
and wire interface nodes in your application.

When you execute the application, the Interface for MATLAB invokes MATLAB, which
calls the MATLAB file. Input data passes from the diagram to MATLAB, and data returns
from MATLAB to the diagram.

The Interface for MATLAB supports Windows targets only.

DAQExpress

138 ni.com

Examples

Search within the programming environment to access the following installed
examples:

• Interface for MATLAB Fundamentals
• Interface for MATLAB Working with nD Arrays
• Interface for MATLAB Working with Structures
• MATLAB User Defined Function
• MATLAB Monte Carlo Calculation
• Prime Number Calculation

MATLAB® is a registered trademark of The MathWorks, Inc.

Related tasks:

• Calling MATLAB Functions and Scripts
• Debugging MATLAB Functions and Scripts
• Migrating from MathScript Node to Interface for MATLAB

Calling MATLAB Functions and Scripts

Create an Interface for MATLAB to define calls to a MATLAB function or script.

1. On the Project Files tab, select New » Interface for MATLAB®.
2. In the Interface for MATLAB, use one of the following options to specify a function

or script you want to call:
◦ Click the ... button and select a MATLAB file on disk.
◦ Enter the name of a MATLAB function or the filename of a MATLAB file on the

MATLAB search path. Use this option to build your G dataflow application into
an executable (.exe).

3. On the Document tab, choose the File type of the MATLAB file you want to call.

NI recommends that you format MATLAB programs into functions because
functions perform better than scripts and offer a clean programming model.

DAQExpress

© National Instruments 139

4. Define the interface node that maps to the arguments in the function or
variables in the script.
a. Click Add interface node.
b. On the Item tab, enter a name for the interface node.

The name will show up in the node icon.
c. Click Add parameter.
d. On the Item tab, specify the parameter name, data type, and behavior.
e. Add more parameters as necessary.

The number of parameters in the interface node must match the number of
arguments in the function or the number of variables in the script.

5. Save the Interface for MATLAB.
6. Open the VI in which you want to call the MATLAB function or script.
7. On the diagram palette, click Project Items » Software to find the interface node

you defined in the Interface for MATLAB.
8. Drop the interface node on the diagram.
9. Wire the interface node and complete the diagram.

10. Run the VI.

The MATLAB Command Window automatically launches. Input data passes from
the diagram to MATLAB, and data returns from MATLAB to the diagram.

Related concepts:

• Interfaces for MATLAB

Related tasks:

• Debugging MATLAB Functions and Scripts

Related information:

• Programming Scripts and Functions in MATLAB

Note If you have multiple versions of MATLAB installed, by default the
Interface for MATLAB invokes the version of MATLAB you most recently
installed.

DAQExpress

140 ni.com

https://www.mathworks.com/help/matlab/programming-and-data-types.html

Debugging MATLAB Functions and Scripts

You can debug MATLAB functions and scripts when you use an Interface for MATLAB to
call them in your G dataflow application.

Complete the following steps to debug a function or script.

1. In an Interface for MATLAB, ensure that you specify the correct file path to a
MATLAB function or script.

2. Click Open in MATLAB® to open the function or script in the MATLAB Editor.
3. In the MATLAB Editor that launches, add a breakpoint on the line of code where

you think the problem could be.
4. Run your G dataflow application.

The execution of the MATLAB function or script pauses at the specific line where
you add the breakpoint.

5. While the function or script is paused, you can view the value of each argument in
the MATLAB Editor.

6. Click Continue in the MATLAB Editor.
The G dataflow application finishes executing the remaining code.

7. Change the values of arguments or modify the script or function to produce
expected results by using standard MATLAB functionality.

Importing and Exporting MATLAB Data

In a G dataflow application, you can import data from or export data to MATLAB® using
MATLAB formatted binary files (.mat).

To import data from MATLAB, click the Import button in the Captured Data tab and
select a .mat file. You can use the data in your G dataflow application.

To export data to MATLAB, right-click a data item in the Captured Data tab and select
Export to export to a .mat file. You can then load the data file in MATLAB to analyze
the data.

Related information:

• Capturing and Analyzing Data

DAQExpress

© National Instruments 141

https://www.ni.com/docs/csh?topicname=capturing-data.html

Migrating from MathScript Node to Interface for MATLAB

Use an Interface for MATLAB to migrate source code that contains a MathScript
Node.

When you open a VI containing a MathScript Node, the MathScript Node is replaced
with a Sequence Structure and the original MathScript code is converted to a MATLAB
file (.m). The VI is broken and you must modify the code to replicate the behavior of
the original code.

Complete the following steps to migrate your code:

1. Ensure that the generated MATLAB file works in MATLAB.

Refer to the comments in the Sequence Structure to locate the MATLAB file on disk.
If the MATLAB file contains MathScript-specific function names, you must modify
the file to use MATLAB function names. Refer to Migrating MathScript Functions to
MathWorks® Functions for more information about mapping MathScript function
names and their corresponding function names in MathWorks products.

2. Create an Interface for MATLAB to call the MATLAB file.

3. Return to the VI diagram and rewire controls and indicators to the interface node.
a. Click Project Files » Software, select the interface node, and drop the interface

node on the diagram.
b. Wire controls and indicators to the interface node by replicating wire

connections to the Sequence Structure.
c. Remove the Sequence Structure and clean up the diagram.
d. Save the VI.

Note
◦ You must choose Function as the File type on the Document tab

because the generated MATLAB file is a function.
◦ You must configure parameters of the interface node using

consistent input/output arguments in the MATLAB file. Find input/
output arguments of the MATLAB file from comments in the
Sequence Structure.

DAQExpress

142 ni.com

https://www.ni.com/docs/csh?topicname=mathscript-vs-matlab-function.html
https://www.ni.com/docs/csh?topicname=mathscript-vs-matlab-function.html
https://www.ni.com/docs/csh?topicname=calling-matlab-functions-scripts.html

Notice that the VI is no longer broken. The modified code has the same behavior as the
original code.

Migrating MathScript Functions to MathWorks Functions

The following table lists MathScript function names and their corresponding function
names in MathWorks products. Review the usage of these functions when you migrate
from MathScript Node to Interface for MATLAB.

MathScript Function
Name

MathWorks Function
Name MathWorks Product

ac_to_poly ac2poly Signal Processing Toolbox™

ac_to_rc ac2rc Signal Processing Toolbox™

ac_to_rcschur schurrc Signal Processing Toolbox™

accumproducts cumprod MATLAB®

accumsums cumsum MATLAB®

accumtrapint cumtrapz MATLAB®

ackermann acker Control System Toolbox™

add_noise imnoise Image Processing Toolbox™

algriccati care Control System Toolbox™

ar_burg arburg Signal Processing Toolbox™

ar_covar arcov Signal Processing Toolbox™

ar_mcovar armcov Signal Processing Toolbox™

ar_yule aryule Signal Processing Toolbox™

arginchk narginchk MATLAB®

arginnum nargin MATLAB®

argoutchk nargoutchk MATLAB®

argoutnum nargout MATLAB®

augmentstate augstate Control System Toolbox™

balance_diag ssbal Control System Toolbox™

DAQExpress

© National Instruments 143

MathScript Function
Name

MathWorks Function
Name MathWorks Product

balance_grammian balreal Control System Toolbox™

barhoriz barh MATLAB®

base_to_dec base2dec MATLAB®

bessel_h besselh MATLAB®

bessel_i besseli MATLAB®

bessel_j besselj MATLAB®

bessel_k besselk MATLAB®

bessel_y bessely MATLAB®

beta_incomplete betainc MATLAB®

beta_ln betaln MATLAB®

bin_to_dec bin2dec MATLAB®

bitnot bitcmp MATLAB®

bitreverseorder bitrevorder Signal Processing Toolbox™

blockdiag blkdiag MATLAB®

buffermx buffer Signal Processing Toolbox™

c_to_d c2d Control System Toolbox™

canonical canon Control System Toolbox™

cart_to_polar cart2pol MATLAB®

cart_to_sphere cart2sph MATLAB®

ccepstrum cceps Signal Processing Toolbox™

cctranspose ctranspose MATLAB®

char setstr MATLAB®

chirpzt czt Signal Processing Toolbox™

circularshift circshift MATLAB®

clfig clf MATLAB®

clgraph clf MATLAB®

DAQExpress

144 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

clout clc MATLAB®

coherence cohere Signal Processing Toolbox™

coherence_ms mscohere Signal Processing Toolbox™

colormapplot rgbplot MATLAB®

companion compan MATLAB®

condeign condeig MATLAB®

condestimate condest MATLAB®

condrecip rcond MATLAB®

conjugate conj MATLAB®

contouris contourf MATLAB®

contours contourc MATLAB®

conv2d conv2 MATLAB®

convcirc cconv Signal Processing Toolbox™

convexhull convhull MATLAB®

convmx convmtx Signal Processing Toolbox™

corrcoeff corrcoef MATLAB®

corrmx corrmtx Signal Processing Toolbox™

covarmx cov MATLAB®

crosscorr xcorr Signal Processing Toolbox™

crosscorr2d xcorr2 Signal Processing Toolbox™

crosscovar xcov Signal Processing Toolbox™

crosspsd cpsd Signal Processing Toolbox™

crosssd csd Signal Processing Toolbox™

ctrbmx ctrb Control System Toolbox™

ctrbstairs ctrbf Control System Toolbox™

d_to_c d2c Control System Toolbox™

DAQExpress

© National Instruments 145

MathScript Function
Name

MathWorks Function
Name MathWorks Product

d_to_d d2d Control System Toolbox™

dalgriccati dare Control System Toolbox™

datatype class MATLAB®

date_to_num datenum MATLAB®

date_to_str datestr MATLAB®

date_to_vector datevec MATLAB®

datescale datetick MATLAB®

dec_to_base dec2base MATLAB®

dec_to_bin dec2bin MATLAB®

dec_to_hex dec2hex MATLAB®

deflate squeeze MATLAB®

deg_to_rad deg2rad MATLAB®

delay_to_z delay2z Control System Toolbox™

density_kernel ksdensity Statistics and Machine Learning
Toolbox™

dftmx dftmtx Signal Processing Toolbox™

difference diff MATLAB®

digitreverseorder digitrevorder Signal Processing Toolbox™

dirichlet diric Signal Processing Toolbox™

dlaplacian del2 MATLAB®

dlqr_y dlqry Control System Toolbox™

dlyapunov dlyap Control System Toolbox™

drandss drss Control System Toolbox™

drandtf tf Control System Toolbox™

drandzpk zpk Control System Toolbox™

duplicate deal MATLAB®

eigsort eigs MATLAB®

DAQExpress

146 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

elliptic_int ellipke MATLAB®

elliptic_j ellipj MATLAB®

eqtflen eqtflength Signal Processing Toolbox™

erf_inv erfinv MATLAB®

erfc_inv erfcinv MATLAB®

erfc_scale erfcx MATLAB®

estimator estim Control System Toolbox™

evalfreq evalfr Control System Toolbox™

exp_int expint MATLAB®

expmx expm MATLAB®

expmx_eign expmdemo3 MATLAB®

expmx_pade expmdemo1 MATLAB®

expmx_taylor expmdemo2 MATLAB®

eyediagram eyediagram Communications Toolbox™

fft2d fft2 MATLAB®

filter_2d filter2 MATLAB®

filter_fft fftfilt Signal Processing Toolbox™

filter_impulse impinvar Signal Processing Toolbox™

filter_lattice latcfilt Signal Processing Toolbox™

filter_median medfilt1 Signal Processing Toolbox™

filter_rcos rcosflt Communications Toolbox™

filter_sg sgolayfilt Signal Processing Toolbox™

filter_sos sosfilt Signal Processing Toolbox™

filter_zerophase filtfilt Signal Processing Toolbox™

filteric filtic Signal Processing Toolbox™

findnz find MATLAB®

DAQExpress

© National Instruments 147

MathScript Function
Name

MathWorks Function
Name MathWorks Product

fir_fs fir2 Signal Processing Toolbox™

fir_gauss firgauss Signal Processing Toolbox™

fir_gaussps gaussfir Signal Processing Toolbox™

fir_interp intfilt Signal Processing Toolbox™

fir_lsq firls Signal Processing Toolbox™

fir_pm firpm Signal Processing Toolbox™

fir_pmord firpmord Signal Processing Toolbox™

fir_rcos firrcos Signal Processing Toolbox™

fir_remez remez Signal Processing Toolbox™

fir_remezord remezord Signal Processing Toolbox™

fir_sgsmooth sgolay Signal Processing Toolbox™

fir_win fir1 Signal Processing Toolbox™

flatindex sub2ind MATLAB®

fmin_bracket fminbnd MATLAB®

fmin_lp linprog Optimization Toolbox™

fmin_qp quadprog Optimization Toolbox™

fread_audio audioread MATLAB®

freq_space freqspace MATLAB®

freqsd freqs Signal Processing Toolbox™

freqzd freqz Signal Processing Toolbox™

funmx funm MATLAB®

gamma_incomplete gammainc MATLAB®

gamma_ln gammaln MATLAB®

gaussmonopulse gmonopuls Signal Processing Toolbox™

gausspulse gauspuls Signal Processing Toolbox™

gensignal gensig Control System Toolbox™

DAQExpress

148 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

grammian gram Control System Toolbox™

hconcatmx horzcat MATLAB®

hessenberg hess MATLAB®

hex_to_dec hex2dec MATLAB®

hex_to_num hex2num MATLAB®

hilbertmx hilb MATLAB®

histogram hist MATLAB®

histogramc histc MATLAB®

iccepstrum icceps Signal Processing Toolbox™

ifft2d ifft2 MATLAB®

ifft_shift ifftshift MATLAB®

iir_bessel besself Signal Processing Toolbox™

iir_besselzpk besselap Signal Processing Toolbox™

iir_butter butter Signal Processing Toolbox™

iir_butterord buttord Signal Processing Toolbox™

iir_butterzpk buttap Signal Processing Toolbox™

iir_cheby1 cheby1 Signal Processing Toolbox™

iir_cheby1ord cheb1ord Signal Processing Toolbox™

iir_cheby1zpk cheb1ap Signal Processing Toolbox™

iir_cheby2 cheby2 Signal Processing Toolbox™

iir_cheby2ord cheb2ord Signal Processing Toolbox™

iir_cheby2zpk cheb2ap Signal Processing Toolbox™

iir_elliptic ellip Signal Processing Toolbox™

iir_ellipticord ellipord Signal Processing Toolbox™

iir_ellipticzpk ellipap Signal Processing Toolbox™

iir_maxflat maxflat Signal Processing Toolbox™

DAQExpress

© National Instruments 149

MathScript Function
Name

MathWorks Function
Name MathWorks Product

iir_steigmcbride stmcb Signal Processing Toolbox™

iir_yulewalker yulewalk Signal Processing Toolbox™

imagescaled imagesc MATLAB®

impzd impz Signal Processing Toolbox™

ind_to_sub ind2sub MATLAB®

int_to_str int2str MATLAB®

interpolate interp Control System Toolbox™

interpolate1d interp1 MATLAB®

interpolate2d interp2 MATLAB®

interpolateft interpft MATLAB®

intrp2d_uneven griddata MATLAB®

invfreqsd invfreqs Signal Processing Toolbox™

invfreqzd invfreqz Signal Processing Toolbox™

invhilbertmx invhilb MATLAB®

iopzgraph iopzmap Control System Toolbox™

is_char ischar MATLAB®

is_dir isdir MATLAB®

is_empty isempty MATLAB®

is_equal isequal MATLAB®

is_equalnan isequalwithequalnans MATLAB®

is_field isfield MATLAB®

is_finite isfinite MATLAB®

is_hold ishold MATLAB®

is_inf isinf MATLAB®

is_inpolygon inpolygon MATLAB®

is_keyword iskeyword MATLAB®

DAQExpress

150 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

is_letter isletter MATLAB®

is_logical islogical MATLAB®

is_membermx ismember MATLAB®

is_nan isnan MATLAB®

is_numeric isnumeric MATLAB®

is_prime isprime MATLAB®

is_real isreal MATLAB®

is_scalar isscalar MATLAB®

is_sorted issorted MATLAB®

is_space isspace MATLAB®

is_string isstr MATLAB®

is_struct isstruct MATLAB®

is_student isstudent MATLAB®

is_to_rc is2rc Signal Processing Toolbox™

is_validvarname isvarname MATLAB®

kaiserwinord kaiserord Signal Processing Toolbox™

kalman_d kalmd Control System Toolbox™

lar_to_rc lar2rc Signal Processing Toolbox™

lattice_to_tf latc2tf Signal Processing Toolbox™

leftdiv ldivide MATLAB®

leftdivmx mldivide MATLAB®

lib_call calllib MATLAB®

lib_funclist libfunctionsview MATLAB®

lib_isloaded libisloaded MATLAB®

lib_load loadlibrary MATLAB®

lib_unload unloadlibrary MATLAB®

DAQExpress

© National Instruments 151

MathScript Function
Name

MathWorks Function
Name MathWorks Product

linearsolve linsolve MATLAB®

linramp linspace MATLAB®

logmx logm MATLAB®

logramp logspace MATLAB®

lowercase lower MATLAB®

lp_to_bp lp2bp Signal Processing Toolbox™

lp_to_bs lp2bs Signal Processing Toolbox™

lp_to_hp lp2hp Signal Processing Toolbox™

lp_to_lp lp2lp Signal Processing Toolbox™

lqr_d lqrd Control System Toolbox™

lqr_dy ss Control System Toolbox™

lqr_y lqry Control System Toolbox™

lsf_to_poly lsf2poly Signal Processing Toolbox™

lyapunov lyap Control System Toolbox™

margins allmargin Control System Toolbox™

maxfloat realmax MATLAB®

maxfloatint flintmax MATLAB®

maxnamelen namelengthmax MATLAB®

meshgrid2d meshgrid MATLAB®

minfloat realmin MATLAB®

minimal minreal Control System Toolbox™

minimal_state sminreal Control System Toolbox™

minrepseq seqperiod Signal Processing Toolbox™

minus1 uminus MATLAB®

mirror flipdim MATLAB®

mirrorh fliplr MATLAB®

DAQExpress

152 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

mirrorv flipud MATLAB®

moment_central moment Statistics and Machine Learning
Toolbox™

mreduce modred Control System Toolbox™

multmx mtimes MATLAB®

mx_to_str mat2str MATLAB®

nextpowerof2 nextpow2 MATLAB®

normestimate normest MATLAB®

num_to_str num2str MATLAB®

numdays eomday MATLAB®

numdims ndims MATLAB®

numelements numel MATLAB®

numnz nnz MATLAB®

nz nonzeros MATLAB®

obsvmx obsv Control System Toolbox™

obsvstair obsvf Control System Toolbox™

ode_adams ode113 MATLAB®

ode_bdf15 ode15s MATLAB®

ode_bdf23 ode23tb MATLAB®

ode_rk23 ode23 MATLAB®

ode_rk45 ode45 MATLAB®

ode_rosen ode23s MATLAB®

odepset odeset MATLAB®

padm pamdemod Communications Toolbox™

pam pammod Communications Toolbox™

peakfcn1d humps MATLAB®

peakfcn2d peaks MATLAB®

DAQExpress

© National Instruments 153

MathScript Function
Name

MathWorks Function
Name MathWorks Product

phasezd phasez Signal Processing Toolbox™

plotcoord gplot MATLAB®

plottext gtext MATLAB®

plus1 uplus MATLAB®

polar_to_cart pol2cart MATLAB®

poleplace place Control System Toolbox™

poles pole Control System Toolbox™

poly_pw mkpp MATLAB®

poly_pwhermite pchip MATLAB®

poly_scale polyscale Signal Processing Toolbox™

poly_stable polystab Signal Processing Toolbox™

poly_to_ac poly2ac Signal Processing Toolbox™

poly_to_lsf poly2lsf Signal Processing Toolbox™

poly_to_rc poly2rc Signal Processing Toolbox™

polyderivative polyder MATLAB®

polyeign polyeig MATLAB®

polygonarea polyarea MATLAB®

polyintegral polyint MATLAB®

polyvalmx polyvalm MATLAB®

powermx mpower MATLAB®

powerof2 pow2 MATLAB®

powerofreal realpow MATLAB®

psd_burg pburg Signal Processing Toolbox™

psd_covar pcov Signal Processing Toolbox™

psd_mcovar pmcov Signal Processing Toolbox™

psd_periodogram periodogram Signal Processing Toolbox™

DAQExpress

154 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

psd_welch pwelch Signal Processing Toolbox™

psd_yule pyulear Signal Processing Toolbox™

pspec_eign peig Signal Processing Toolbox™

pspec_music pmusic Signal Processing Toolbox™

pulsetrain pulstran Signal Processing Toolbox™

pzgraph pzmap Control System Toolbox™

qadm qamdemod Communications Toolbox™

qam qammod Communications Toolbox™

quadn_trap trapz MATLAB®

quantdecode udecode Signal Processing Toolbox™

quantencode uencode Signal Processing Toolbox™

rad_to_deg rad2deg MATLAB®

randnormal randn MATLAB®

randpermutation randperm MATLAB®

randss rss Control System Toolbox™

randtf tf Control System Toolbox™

randzpk zpk Control System Toolbox™

rc_to_ac rc2ac Signal Processing Toolbox™

rc_to_is rc2is Signal Processing Toolbox™

rc_to_lar rc2lar Signal Processing Toolbox™

rc_to_poly rc2poly Signal Processing Toolbox™

rcepstrum rceps Signal Processing Toolbox™

rcos rcosine Communications Toolbox™

rectintarea rectint MATLAB®

rectpulse rectpuls Signal Processing Toolbox™

ref_plotarea gca MATLAB®

DAQExpress

© National Instruments 155

MathScript Function
Name

MathWorks Function
Name MathWorks Product

ref_plotwin gcf MATLAB®

regex regexp MATLAB®

regex_convert regexptranslate MATLAB®

regex_i regexpi MATLAB®

regex_replace regexprep MATLAB®

regulator reg Control System Toolbox™

remove_field rmfield MATLAB®

reorderdim permute MATLAB®

reorderdiminv ipermute MATLAB®

repeatmx repmat MATLAB®

resample_fir upfirdn Signal Processing Toolbox™

reshapemx reshape MATLAB®

residuezd residuez Signal Processing Toolbox™

reverse_vector flip MATLAB®

revlevinson rlevinson Signal Processing Toolbox™

rgb_to_grayscale rgb2gray MATLAB®

rightdiv rdivide MATLAB®

rightdivmx mrdivide MATLAB®

rlocusfind rlocfind Control System Toolbox™

root_eign rooteig Signal Processing Toolbox™

root_music rootmusic Signal Processing Toolbox™

rotate90 rot90 MATLAB®

rotateplane planerot MATLAB®

scatter3d scatter3 MATLAB®

selectdata ginput MATLAB®

semilog_x semilogx MATLAB®

DAQExpress

156 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

semilog_y semilogy MATLAB®

sets_diff setdiff MATLAB®

sets_intersect intersect MATLAB®

sets_union union MATLAB®

sets_unique unique MATLAB®

sets_xor setxor MATLAB®

showplot shg MATLAB®

singularvalues sigma Control System Toolbox™

sortconjugate cplxpair MATLAB®

sortdown dsort Control System Toolbox™

sortdownreal esort Control System Toolbox™

sos_to_ss sos2ss Signal Processing Toolbox™

sos_to_tf sos2tf Signal Processing Toolbox™

sos_to_zpk sos2zp Signal Processing Toolbox™

soundscaled soundsc MATLAB®

spectrogram specgram Signal Processing Toolbox™

sphere_to_cart sph2cart MATLAB®

splinefit spline MATLAB®

sqrtmx sqrtm MATLAB®

sqrtofreal realsqrt MATLAB®

ss_to_sos ss2sos Signal Processing Toolbox™

ss_to_ss ss2ss Control System Toolbox™

ss_to_tf ss2tf Control System Toolbox™

ss_to_zpk ss2zp Control System Toolbox™

stem3d stem3 MATLAB®

stepsignal stepfun Control System Toolbox™

DAQExpress

© National Instruments 157

MathScript Function
Name

MathWorks Function
Name MathWorks Product

stepzd stepz Signal Processing Toolbox™

str_to_double str2double MATLAB®

str_to_mx str2mat MATLAB®

str_to_num str2num MATLAB®

strcmp_i strcmpi MATLAB®

strcmp_n strncmp MATLAB®

strcmp_ni strncmpi MATLAB®

strconcat strcat MATLAB®

strfindall strfind MATLAB®

stripplot strips Signal Processing Toolbox™

strjustify strjust MATLAB®

strmatchall strmatch MATLAB®

strreplace strrep MATLAB®

strtoken strtok MATLAB®

strtrimwhite strtrim MATLAB®

strvconcat strvcat MATLAB®

strvectorize vectorize MATLAB®

subspaceangle subspace MATLAB®

surface surf MATLAB®

surfacecontour surfc MATLAB®

surfacenorm surfnorm MATLAB®

sys_filter filt Control System Toolbox™

sys_order1 rss Control System Toolbox™

sys_order2 rss Control System Toolbox™

tf_estimate tfe Signal Processing Toolbox™

tf_estimateplot tfestimate Signal Processing Toolbox™

DAQExpress

158 ni.com

MathScript Function
Name

MathWorks Function
Name MathWorks Product

tf_to_lattice tf2latc Signal Processing Toolbox™

tf_to_sos tf2sos Signal Processing Toolbox™

tf_to_ss tf2ss Control System Toolbox™

tf_to_zpk tf2zp Control System Toolbox™

tf_to_zpk_eqlen tf2zpk Signal Processing Toolbox™

timerstart tic MATLAB®

timerstop toc MATLAB®

titles title MATLAB®

triangsearch isinterior MATLAB®

tripulse tripuls Signal Processing Toolbox™

unwrapphase unwrap MATLAB®

updatechol cholupdate MATLAB®

uppercase upper MATLAB®

vandermonde vander MATLAB®

vconcatmx vertcat MATLAB®

view_image imshow MATLAB®

who_all whos MATLAB®

win_bartlett bartlett Signal Processing Toolbox™

win_bartletthann barthannwin Signal Processing Toolbox™

win_blackman blackman Signal Processing Toolbox™

win_blackmanharris blackmanharris Signal Processing Toolbox™

win_bohman bohmanwin Signal Processing Toolbox™

win_cheby chebwin Signal Processing Toolbox™

win_flattop flattopwin Signal Processing Toolbox™

win_gauss gausswin Signal Processing Toolbox™

win_hamming hamming Signal Processing Toolbox™

DAQExpress

© National Instruments 159

MathScript Function
Name

MathWorks Function
Name MathWorks Product

win_hann hann Signal Processing Toolbox™

win_hann2 hanning Signal Processing Toolbox™

win_kaiser kaiser Signal Processing Toolbox™

win_nuttall nuttallwin Signal Processing Toolbox™

win_parzen parzenwin Signal Processing Toolbox™

win_rect rectwin Signal Processing Toolbox™

win_taylor taylorwin Signal Processing Toolbox™

win_triangular triang Signal Processing Toolbox™

win_tukey tukeywin Signal Processing Toolbox™

xlabels xlabel MATLAB®

xlimit xlim MATLAB®

ylabels ylabel MATLAB®

ylimit ylim MATLAB®

zlimit zlim MATLAB®

zpk_to_sos zp2sos Signal Processing Toolbox™

zpk_to_ss zp2ss Control System Toolbox™

zpk_to_tf zp2tf Control System Toolbox™

Creating User Interfaces

To learn more about creating user interfaces, such as how to center cursors on graphs
or charts, how to clear indicator display data, how to set the tabbing order, and how to
write multiple plots to a graph or chart, click the topics in the left-hand navigation.

Centering a Cursor on a Graph or Chart

If you cannot locate a cursor that you added to your graph or chart, you can reset the
cursor position to the center of your graph or chart. Use the cursor legend to center a

DAQExpress

160 ni.com

cursor.

1. If you do not see the cursor legend, select Cursor Legend in the Parts section on
the Item tab for the graph or chart.

2. On the Cursor Legend, navigate to the cursor you want to center.
3. Ensure the Visible? button is selected.
4. Click the Center Cursor button to center the cursor.

Clearing Indicator Display Data in a Chart, Graph, or Array

Right-click the chart, graph, or array and select Clear Data to remove all data from the
indicator displays.

Setting the Tabbing Order for Controls on the Panel

Controls on the panel have an order, called tabbing order, that is unrelated to their
position on the panel.

Tabbing order is based on the order in which you place controls on the panel. The first
control you create on the panel is element 0, the second is 1, and so on. If you delete a
control, the tabbing order adjusts automatically. The tabbing order determines the
order in which the software selects controls when the user presses the <Tab> key while
a VI runs.

Use the Tab Order on the Document tab to configure tabbing order for controls on the
panel.

Writing Multiple Plots to a Graph or Chart

Before you write multiple plots to a graph or chart, you must generate all the data sets
you want to plot. Make sure each set of data has the same data type.

1. Wire each set of data you want to plot to a Build Array node.

Note Cursors are not available for intensity graphs.

DAQExpress

© National Instruments 161

2. Wire the appended array output from Build Array to a graph or chart indicator.
If your data consists of numeric, complex, or cluster values, appended array is
a 2D array. Each row of the array is a separate plot. If your data consists of
waveforms, appended array is a 1D array. Each waveform is a separate plot.

Testing and Debugging

When the results of your application are not what you expect, use a set of tools to
determine where errors occur within your code.

Although errors are often detected automatically, sometimes your code can run
successfully but not as intended. When this happens, you need to identify the source
of the unintended behaviors.

The following debugging tools can help you in this process:

• Probes
• Breakpoints

Highlighting Execution of the Diagram

Execution highlighting reduces the speed of execution and displays data bubbles
that move along the wires, revealing the data that each node receives when it
executes.

When you begin debugging a program, you may not be able to identify which part of
the code introduces the incorrect behavior. To gain a better idea of how data
progresses and changes as it flows through the code, you can use execution
highlighting.

Execution highlighting helps you detect the following kinds of unintended behavior:

• While Loops that never terminate
• Case Structures that execute an unexpected case
• Data values that do not match the expected value

DAQExpress

162 ni.com

You can turn on execution highlighting by clicking the Highlight execution button on
the document toolbar.

Using Probes to Check Values on a Wire

When your WebVI is running in the editor environment, you may want to check the
values on the wires to determine if and where any unexpected data occurs.

To place a probe on a wire, right-click on the wire and select Add Probe. A probe
displays the data from the wire it is on. To view a probe in a temporary overlay on the
diagram, hover over the probe marker on a wire. If desired, you can then click the Pin
button to keep this probe visible. From the Options drop-down you can choose the
different display styles and also remove the probe, as required.

You can also find probes in the Debugging tab on the left side of the editor
environment. The order in the list correlates with the numbers in the probe markers on
the wires.

Probes display the most recent value carried by a wire. You can hover over the probes
in the list and observe the tip strip that specifies when the value was last updated.

The values displayed in the probe list are limited to a line of text. However, you can
hover over a probe and click the > button to display an expanded view of the probe
and the Options drop-down.

Pausing Execution with Breakpoints

When looking for a problem in your code, you may have an idea of the general area
where the problem exists. To help focus on this area, you can use a breakpoint to
pause the VI at a specified point in the program.

When the VI reaches a breakpoint during execution, you can take the following actions:

DAQExpress

© National Instruments 163

• Single-step through execution using the single-stepping buttons.
• Check intermediate values on probes that you placed on wires prior to running the

VI.
• Change values of panel controls.
• Click the Resume button to continue running to the next breakpoint or until the VI

finishes running.

You can add a breakpoint to any wire or node in the code, or in a row of a text-based
programming node. Add a breakpoint by right-clicking the wire, node, or row and
selecting Add breakpoint.

You can add conditional logic to a breakpoint to pause execution if a condition is met.
Add a condition by right clicking the breakpoint and selecting Pause on condition.
Configure the conditions of the breakpoint in the Debugging pane.

Single-Stepping through VIs

While execution highlighting slows the execution of your code, single-stepping allows
you to have more control of viewing individual actions of the program.

With execution highlighting, execution slows down, and the code executes until
completion. With single-stepping, you can execute a single node at a time, causing the
program to pause after the node completes.

You can use single-stepping in three ways: Step In, Step Out, and Step Over. You can
find these options in the Debugging tab.

Step In—Display the code and pause execution
if a node is a subVI and represents more code.

DAQExpress

164 ni.com

For a node that you cannot open, use this option
to highlight the node and pause its execution.
For text-based programming nodes, Step-In
processes the code row-wise.

Step Out— Complete the execution of the
current diagram or subdiagram and pause.

Step Over—Execute a node without stepping
into the node and pause at the next node.

While single-stepping, you will notice the following behaviors:

• When you single-step through code, nodes are highlighted to indicate they are
ready to execute.

• Gray lines appear in a loop or a diagram to indicate that the section of code has
finished executing but the program is still running.

Viewing Wire Data from the Previous VI Execution

You can configure a VI to retain wire values on the diagram so that when you create a
probe, the probe displays the most recent data that flowed through the wire at the last
VI execution.

Retaining wire values can help you debug a VI when a diagram is complex and you
need to view specific wire data after a VI finishes executing to determine where an
error occurred.

1. Click the Retain wire values button on the document toolbar to start retaining all
wire values on the diagram.

2. Run the VI at least once so that wire values are immediately available to any

DAQExpress

© National Instruments 165

probes you create.
3. Place a probe on a specific wire by right-clicking the wire and selecting Add probe.

To see the most recent value of the data that passed through the wire, either hover
over the wire or click the probe.

Identifying Errors That Prevent You from Running Code

As you create code, a broken Run button communicates that the code contains
errors that prevent it from running.

You can use the provided error and warning messages to help fix these problems.
Errors break the code. You must resolve any errors before you can run the program.
Warnings do not prevent you from running the code. They are designed to help you
avoid potential problems in the program.

To identify the specific errors, click the broken Run button to display the Errors and
Warnings tab. The following image highlights sections of the Errors and Warnings tab
that define detected errors and warnings.

1
Severity—Denotes whether an issue is an error
or a warning.

2
Source—Identifies the object that is causing the
error or warning.

3
Message—Provides more detail about why the
error or warning exists.

Improve Applications with Execution Logs

DAQExpress

166 ni.com

Well-written applications use execution logs for both activity audit and monitoring. An
execution log makes it easy for a developer or user to track and identify issues that
occur throughout the application without excessive effort.Maintaining an execution
log allows you to review all activity and make improvements to your application
accordingly.

An application should record data from multiple execution points throughout an
application—errors, exceptions, successful execution, and so on. An execution log can
help you recreate a certain behavior and improve your application effectively. For
example, you can use the log to do one or more of the following:

• Modify the code to be able to handle a situation that caused an error
• Modify the code based on the most common use case
• Update the documentation for the application so that users interact with the

application in a more predictable way
• Validate successful execution

The execution log should include as much information as you need to understand the
state of the product at the time the data was collected. You might include one or more
of the following components in each entry of an execution log:

• The current time and date
• A pre-defined category for the activity
• A running count of the specific type of activity
• A description of the activity
• The value of data that was generated during or prior to the activity
• The location of the activity within the application
• The type and severity of the problem, if there is one

You can use the String nodes to generate, combine, and write the text for each entry of
an execution log to one or more text files. A log file should be human- and computer-
readable, but you can format your file in a way that fits the needs of your application.

Viewing the Hierarchy of VIs in Your Application

Open the Call Hierarchy document to see the hierarchy of VIs and subVIs and
understand the calling relationships between them in your application.

DAQExpress

© National Instruments 167

For example, you can use the Call Hierarchy document to see all of the VIs that call a
specific VI and the subVIs that specific VI calls. This can be helpful when you need to
debug a part of your application and want to see which subVIs are connected to each
other.

1. Click View » Call Hierarchy to open a Call Hierarchy document for your project.

2. (Optional) Click Clean up diagram to change the visual arrangement of the
hierarchy.

3. (Optional) Select a subVI to highlight its calling connections.
4. (Optional) Double-click a subVI displayed in the Call Hierarchy document to open

it.

Language Libraries

Multiple programming languages are available to accommodate your programming
needs.

Language Description

G Dataflow (G)

A graphical language in which data flows from left
to right through wires and nodes.

Note Some callers may be hidden. Toggle the triangle icon below a node
to show or hide callers.

© 2025 National Instruments Corporation.

DAQExpress

168 ni.com

	DAQExpress 5.1 Manual
	Top Tasks
	Supported Hardware
	Data Acquisition and Control
	Analog Input Devices and Modules
	Analog Output Devices and Modules
	Counter/Timer Devices and Modules
	Digital I/O Devices and Modules
	Digitizer Modules
	Multifunction I/O Devices
	myDAQ - Student Data Acquisition Devices
	Sound and Vibration Devices and Modules
	Strain/Bridge Input Modules
	Temperature Input Devices and Modules
	User Interface Modules

	CompactDAQ Chassis

	Getting Started with DAQExpress
	Keyboard Shortcuts
	File Operations
	Basic Editing
	Selecting and Moving Objects
	Navigating the Environment
	Navigating the Panel and Diagram
	Debugging Commands
	Help Commands
	Running Code
	Wiring
	Editing Text
	Capturing Data
	Navigating the Project Files and Captured Data Tabs
	Zooming

	Tips and Tricks for Editing Diagram Code
	Creating Diagram Code
	Editing Diagram Code
	Organizing Diagram Code

	Live View: A Visual Representation of Hardware in Your System
	Manually Adding Hardware to the Live View of SystemDesigner

	Project Documents
	Customizing DAQExpress
	Customizing Mouse Wheel Behavior
	Displaying Tabs in the Editor
	Aligning Objects on the Panel
	Displaying the Diagram Grid
	Resetting the Workspace

	Creating Your First Application
	SubVIs
	Creating a SubVI
	Creating a SubVI from a Section of Existing Code
	Configuring an Existing VI For Use As a SubVI
	VI Reentrancy
	Choosing the Right VI Reentrancy Option for a SubVI

	Capturing and Analyzing Data
	What to Use
	What to Do

	Analyzing Data in an Interactive Graph
	Customizing Analysis Functions Using Interactive Graphs
	Resizing Data Sets to Open in Analysis Panels

	Warning about the Abort Button

	Collaborating on Applications
	Package Dependencies
	Sharing a Project and Including Package Dependencies
	Capturing the Package Dependencies of a Project
	Resolving Missing or Mismatched Package Dependencies on a Development System

	Programming in G
	Nodes: Computational Units
	Anatomy of a Node

	Wires: Transferring Data between Nodes
	Troubleshooting Broken Wires
	Wiring Best Practices
	Wiring Shortcuts

	Constants
	Terminals
	Data Transfer between the Panel and the Diagram
	Dataflow between the Diagram and Another VI
	Dataflow between Duplicates of the Same Terminal

	Opening, Processing, and Closing Files
	What to Use
	What to Do
	Troubleshooting

	Strategies for Improving VI Execution Speed
	Strategies for Improving Execution Speed through Memory Management
	Strategies for Improving Execution Speed by Minimizing I/O Calls
	Guidelines for Designing Efficient Panels
	Using Parallel Loops to Increase VI Execution Speed

	Repeating Operations
	Types of Loops
	Repeating Operations until a Condition Occurs
	Repeating Operations a Set Number of Times
	Repeating Operations Once for Every Element in an Array
	Loop Timing
	Adjusting the Execution Speed of a Loop
	Synchronizing the Execution of Multiple Loops

	Accessing Data from the Previous Loop Iteration
	Accessing Data from Multiple Past Loop Iterations

	Error Management
	Automatic Error Management
	Programmatic Error Management

	Executing Code Based on a Condition
	What to Use
	What to Do
	Troubleshooting

	Parsing a String into Smaller Pieces
	What to Use
	What to Do
	Troubleshooting
	Examples

	State Machine Design Pattern
	When to Use a State Machine
	State Diagrams
	Standard States To Consider When Planning Your Program
	Diagram Components of a State Machine
	Common State Machine Transition Code

	Best Practices for Creating Projects in G Web Development Software
	File and Project Organization in G Web Development Software
	Icons and Connector Panes for G Web Development Software Projects
	Panel Design for G Web Development Software Projects
	Diagram Design for G Web Development Software Projects
	Localization for LabVIEW NXG Projects
	Other Best Practices for LabVIEW NXG Projects

	Best Practices for Designing and Developing an Application Programming Interface (API) in G Web Development Software
	File Organization and Node Naming for Distributed APIs
	Component Organization for Distributed APIs
	Icons and Connector Panes for Distributed APIs
	Panel Design for Distributed APIs
	Data Type Selection for Distributed APIs
	Palette Taxonomy for Distributed APIs
	Documentation for Distributed APIs
	Error Message Design for Distributed APIs
	API Design for Distributed APIs

	Interfaces for MATLAB
	Calling MATLAB Functions and Scripts
	Debugging MATLAB Functions and Scripts
	Importing and Exporting MATLAB Data
	Migrating from MathScript Node to Interface for MATLAB
	Migrating MathScript Functions to MathWorks Functions

	Creating User Interfaces
	Centering a Cursor on a Graph or Chart
	Clearing Indicator Display Data in a Chart, Graph, or Array
	Setting the Tabbing Order for Controls on the Panel
	Writing Multiple Plots to a Graph or Chart

	Testing and Debugging
	Highlighting Execution of the Diagram
	Using Probes to Check Values on a Wire
	Pausing Execution with Breakpoints
	Single-Stepping through VIs
	Viewing Wire Data from the Previous VI Execution
	Identifying Errors That Prevent You from Running Code
	Improve Applications with Execution Logs
	Viewing the Hierarchy of VIs in Your Application

	Language Libraries

