
NI-ATE Core
User Manual

2025-03-26

Contents Contents
NI-ATE Core Overview . 3

NI-ATE Core System Terminology . 3
NI-ATE Core System Components . 4

Installing NI-ATE Core . 6
NI-ATE Core New Features and Changes . 7

NI-ATE Core 2025 Q1 Changes . 7
NI-ATE Core 2024 Q4 Changes . 7
NI-ATE Core 2024 Q2 Changes . 7
NI-ATE Core 2024 Q1 Changes . 8

Namespace, Minimum .NET Framework Version, and Dependencies 9
Configuring a Basic C# Application in Visual Studio . 10
Creating and Disposing of Sessions . 11
Managing Errors and Exceptions . 13
Components and Sensors . 14

AC Power Distribution Unit (AC PDU) . 14
DC Power Distribution Unit (DC PDU) . 16
Power Entry Panel (PEP) . 18
Rack Control Unit . 21
Fan Domain and Fan Panel . 23
Uninterruptable Power Supply . 25
Rack Temperature Sensor Unit . 27

Getting Safety Interlock Status . 29
Get or Set System State or Power State (Run Remotely) . 31
Triggering a Full Restart or Service-Level Restart . 34
Control the Rack Tower Light . 36
Updating Firmware . 38
Rack System State and Rack Power State Descriptions . 41
Full Restart and RCU Service-Level Restart Descriptions . 44
Credential Management . 46
Log File Location and Behavior . 50

NI-ATE Core User Manual

2 ni.com

NI-ATE Core Overview NI-ATE Core Overview
NI-ATE Core is driver software that supports communication with an ATE Core
Configuration Generation 2 (ATECCGEN2) rack. The NI-ATE Core User Manual User
Manual provides detailed descriptions of product functionality and examples for use.

NI-ATE Core provides an API for controlling rack components and monitoring rack
health and power. Use the NI-ATE Core C# library to create a Microsoft C# application
that connects to a rack over a network to monitor and control rack components or
sensors. The NI-ATE Core C# library also provides functions to perform rack operations
such as updating firmware, changing rack power state, or rebooting the rack.

Looking for something else?

For information not found in the user manual for your product, like API reference or
hardware documentation, browse Related Information.

Related information:

• NI-ATE Core API Reference Manual
• ATE Core Configurations Generation 2 System Components (in ATE Core

Configurations Generation 2 User Manual)

NI-ATE Core System Terminology NI-ATE Core System Terminology
Before you begin building your application, review the following terms related to
managing an ATECCGEN2 rack with NI-ATE Core software.

Table 1. Terms Related to ATECCGEN2 Rack Management

Term Description

ATE Core
Configuration
GEN2
(ATECCGEN2)
Rack

Refers to an actual rack that can be accessed by a host over a network. A functional
rack includes multiple rack components. The subsequent table provides
component descriptions. Users can insert payloads, such as a NI PXIe chassis, into
the slots of the rack.

NI-ATE Core Overview

© National Instruments 3

https://www.ni.com/docs/csh?pubname=ni-atecore-dotnet-api-ref&topicname=namespace_national_instruments_1_1_ate_core.html
https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=hardware-components.html
https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=hardware-components.html

Host A controller or a PC that uses NI-ATE Core software to establish a session to monitor
or control the rack over the network.

Payload Items, such as a NI PXIe chassis, that users insert into the slots of the rack.

RCU Service

A service that runs automatically in the RCU embedded operating system when the
rack is turned on. The RCU service initializes all rack components during rack
initialization. In normal operation, it monitors and controls component health
states. It also monitors and controls power supplies to components and payloads.
Some advanced functions, like firmware updates, are also handled by RCU service.

Related information:

• ATE Core Configurations Generation 2 System Components (in ATE Core
Configurations Generation 2 User Manual)

NI-ATE Core System Components NI-ATE Core System Components
Before you begin building your application, review the following summary of rack
components and their function. For more detailed documentation, refer to the
hardware user manual.

The NI-ATE Core API allows you to interact with each rack component and any
component sensors. Component sensors differ depending on the component type.

Table 2. ATECCGEN2 Rack Component Summary

Component Description

Rack Control Unit
(RCU)

The embedded controller in the rack. The RCU communicates with hosts over
the network and controls rack components using internal electrical buses.

Fan Panel Exhausts hot air out of the rack. Each panel has 3 fans and temperature sensors.

Power Entry
Panel (PEP)

Rack entry point for facility power. The PEP also contains the safety disconnect
relays which open when the Emergency Power Off (EMO) button is pressed.

NI-ATE Core Overview

4 ni.com

https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=hardware-components.html
https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=hardware-components.html

AC Power
Distribution Unit
(AC PDU)

Receives single-phase power from the PEP and distributes it to equipment in
the rack, including DC PDUs.

DC Power
Distribution Unit
(DC PDU)

Supplies DC power to devices or payloads in the rack.

Rack Temperature
Sensor Unit

Temperature sensor units installed throughout a rack to monitor the
temperature of the rack.

Related information:

• ATE Core Configurations Generation 2 System Components (in ATE Core
Configurations Generation 2 User Manual)

NI-ATE Core Overview

© National Instruments 5

https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=hardware-components.html
https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=hardware-components.html

Installing NI-ATE Core Installing NI-ATE Core
Visit https://www.ni.com/download and search for NI-ATE Core to download and
install NI-ATE Core. You can also use Package Manager to install NI-ATE Core.

Installing NI-ATE Core

6 ni.com

https://www.ni.com/download

NI-ATE CoreNI-ATE Core New Features and Changes New Features and Changes
Learn about updates, including new features and behavior changes, introduced in
each version of NI-ATE Core.

Discover what is new in the latest releases of NI-ATE Core.

NI-ATE Core 2025 Q1 Changes NI-ATE Core 2025 Q1 Changes
• Added support for Hardware Configuration Utility (HWCU).

NI-ATE Core 2024 Q4 Changes NI-ATE Core 2024 Q4 Changes
• Added API support for uninterruptable power supply (UPS).
• Added APIs to monitor interlock switch states.

Related reference:

• Getting Safety Interlock Status

NI-ATE Core 2024 Q2 Changes NI-ATE Core 2024 Q2 Changes
• Added API support for tower light color control.
• Added password saving functionality to PasswordManager class, which allows

you to save the password you use to access a target rack from a host.

Related reference:

• Credential Management

Note If you cannot find new features and changes for your version, it might
not include user-facing updates. However, your version might include non-
visible changes such as bug fixes and compatibility updates. For information
about non-visible changes, refer to your product Release Notes.

NI-ATE Core New Features and Changes

© National Instruments 7

NI-ATE Core 2024 Q1 Changes NI-ATE Core 2024 Q1 Changes
• Initial release.

NI-ATE Core New Features and Changes

8 ni.com

Namespace, Minimum .NET Framework Namespace, Minimum .NET Framework
Version, and Dependencies Version, and Dependencies
Use the NI-ATE Core C# library to create a Microsoft C# application that connects to the
ATECCGEN2 rack over a network to monitor and control rack components or sensors.

The NI-ATE Core C# library is built with .NET Framework 4.5. Your user application
must support .NET Framework 4.5 or above to use the NI-ATE Core C# library. The NI-
ATE Core C# API is defined within the NationalInstruments.AteCore
namespace. You must include this namespace to access and use the API.

Including the NI-ATE Core Namespace
using NationalInstruments.AteCore;

Dependencies

The NI-ATE Core C# library depends on third-party libraries, which are listed below and
which are installed along with NI-ATE Core. You must include these dependencies in
your application.

Table 3. NI-ATE Core C# Library Third-Party Dependencies

Third-Party Library Version Installation Path

Newtonsoft
(Newtonsoft.Json.dll) 12.0.3 \Program Files (x86)\National

Instruments\NI-ATE Core\Bin

Namespace, Minimum .NET Framework Version, and Dependencies

© National Instruments 9

Configuring a Basic C# Application in Visual Configuring a Basic C# Application in Visual
Studio Studio
This topic outlines how to create a C# application with NI-ATE Core using Microsoft
Visual Studio.

1. Create a new .NET Framework 4.5.2 project.
2. In the Solution Explorer, right-click your project and select Unload Project.
3. Add the NI-ATE Core reference to the CSPROJ file and save the file.

<Project …> …

 <ItemGroup>

 <Reference Include="NationalInstruments.AteCore.Fx45" />

 …

 </ItemGroup>

 …

</Project>

4. In the Solution Explorer, right-click your project and select Reload Project with
Dependencies.

5. View the Reference Properties to see the reference path. The NI-ATE Core DLL
loads automatically from the global assembly cache (GAC).

6. Include the namespace in your cs file: using
NationalInstruments.AteCore;

7. Add a reference to the Newtonsoft driver dependency:
a. In the Solution Explorer, expand your project to ensure the project contents are

visible.
b. Within your project, right-click on References and select Add Reference.
c. Select Browse and click the Browse button.
d. Navigate to C:\Program Files (x86)\National Instruments\

NI-ATE Core\Bin.
e. Select Newtonsoft.Json.dll.
f. Click Add.

g. Click OK.

You can now write your remaining logic and build your program.

Configuring a Basic C# Application in Visual Studio

10 ni.com

Creating and Disposing of Sessions Creating and Disposing of Sessions
To interact with the ATECCGEN2 rack, you must create an IAteCoreSession object
using the static function CreateAteCoreSessionAsync from
AteCoreSession. This static function takes in the following arguments to connect
to a rack from a host:

• Hostname/IP address
• Password
• Optional rememberPassword parameter

When the session object is returned from CreateAteCoreSessionAsync, the
network connection is successfully established and you can use the session to call the
properties and functions of different classes and interfaces to perform the desired
operation. Call Dispose to close the network connection.

Session Creation and Session Disposal
IAteCoreSession ateCoreSession = null;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password, true);

 // Call another function to perform an operation on the ATECCGEN2 rack.

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Creating and Disposing of Sessions

© National Instruments 11

Related reference:

• Credential Management

Creating and Disposing of Sessions

12 ni.com

Managing Errors and Exceptions Managing Errors and Exceptions
All functions and properties should be called within a try-catch block. When an error
occurs in a function, an exception will be thrown and caught by the catch block. You
can retrieve the Data[“ErrorCode”] and Data[“ErrorMessage”] in the
exception to determine the error. The NI-ATE Core C# library has a defined list of error
codes in the class AteCoreStatusCode which you can compare to the value of the
error code in the exception.

Catching Exceptions during Session Creation
using NationalInstruments.AteCore;

using NationalInstruments.AteCore.StatusCode;

IAteCoreSession ateCoreSession = null;

try

{

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

}

catch (Exception ex)

{

 if

(ex.Data["ErrorCode"].Equals(AteCoreStatusCode.NIATECORE_ERR_INCORRECT_PASSWORD))

 {

 Console.WriteLine("Exception: {0}", ex.Data["ErrorMessage"]);

 }

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Managing Errors and Exceptions

© National Instruments 13

Components and Sensors Components and Sensors
The ATECCGEN2 rack contains several types of components with distinct component
classes. Component classes are inherited from IComponent.

The NI-ATE Core API allows you to interact with each rack component and to access the
sensors inside the component. Component sensors differ depending on the
component type. To get the list of detected rack components, create a session and call
the corresponding property of IAteCoreSession.

Table 4. NI-ATE Core C# Component Interfaces

Component C# Interface

Rack Control Unit (RCU) IRackControlUnit

Fan Panel
IFanPanel (Accessed via the FanPanels
property of IFanDomain)

Power Entry Panel (PEP) IPowerEntryPanel

AC Power Distribution Unit (AC PDU) IACPowerDistributionUnit

DC Power Distribution Unit (DC PDU) IDCPowerDistributionUnit

Uninterruptable Power Supply IUninterruptablePowerSupply

Rack Temperature Sensor Unit IRackTemperatureSensorUnit

AC Power Distribution Unit (AC PDU) AC Power Distribution Unit (AC PDU)
The AC power distribution unit (AC PDU) supplies AC power to payloads connected to
AC PDU power outlets. You can read the current sensor on the AC power outlet to
monitor the AC power supply on each outlet. Outlets are grouped as power banks.
Each power bank can be turned off (TurnOffPowerBankAsync()) and on
(TurnOnPowerBankAsync()) individually. To get the current state of a power bank
use GetPowerBankStateAsync(). The electric current measured at each power
outlet can be read independently by accessing the IOutletSensor objects stored in
each power bank (IPowerBank).

Components and Sensors

14 ni.com

Reading All Outlet Sensors on All AC Power Distribution Unit Banks

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the objects of ACPDU component

 IACPowerDistributionUnit[] acPowerDistributionUnits =

ateCoreSession.ACPowerDistributionUnits;

 foreach (var acPowerDistributionUnit in acPowerDistributionUnits)

 {

 // Print some of the properties of the component

 Console.WriteLine("AC power distribution unit name: {0}",

acPowerDistributionUnit.Name);

 Console.WriteLine("AC power distribution unit location: {0}",

acPowerDistributionUnit.Location);

 Console.WriteLine("AC power distribution unit vendor name: {0}",

acPowerDistributionUnit.VendorName);

 Console.WriteLine("AC power distribution unit model name: {0}",

acPowerDistributionUnit.ModelName);

 Console.WriteLine("AC power distribution unit serial number: {0}",

acPowerDistributionUnit.SerialNumber);

 Console.WriteLine("AC power distribution unit firmware version:

{0}", acPowerDistributionUnit.FirmwareVersion);

 foreach (var powerBank in acPowerDistributionUnit.PowerBanks)

 {

 if (await powerBank.GetPowerBankState() == PowerState.On)

Note AC PDU control and sensor readings are only accessible when the
ATECCGEN2 rack is in the Running power state. When the rack is not in the
Running power state, attempting to read a sensor returns Double.NaN
and attempting to enable or disable a power bank triggers an exception.

Note A payload that discharges slowly can cause the AC PDU bank state
detection circuitry to report that the bank is on. Add a delay in cases where
you call GetPowerBankStateAsync() after
TurnOffPowerBankAsync() while connected to a payload that
discharges slowly.

Components and Sensors

© National Instruments 15

 {

 Console.WriteLine(powerBank.BankNumber);

 foreach (var outletCurrentSensor in

powerBank.OutletCurrentSensors)

 {

 Console.WriteLine("Outlet number: {0}",

outletCurrentSensor.OutletNumber);

 Console.WriteLine("Current sensor reading:

{0} A", await outletCurrentSensor.ReadSensorAsync());

 }

 }

 }

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

DC Power Distribution Unit (DC PDU) DC Power Distribution Unit (DC PDU)
The DC power distribution unit (DC PDU) supplies DC power to payloads connected to
DC power outlets. You can read the current sensor and voltage sensor on the DC power
outlet to monitor the DC power supply. Each outlet can be turned off and on
individually.

In certain circumstances, a rack with DC PDU installed may return an empty
DCPowerDistributionUnits array from IAteCoreSession. A DC PDU is only
detected when the RackPowerState has been set to the Running state at least
once. To set the rack power state to Running state, press the power button on the
rack or call SetRackPowerStateToRunningAsync. Then, trigger the system to
update the DC PDU list by calling RefreshDCPowerDistributionUnitsAsync.

Components and Sensors

16 ni.com

Checking Rack Power State, Setting Power State to Running, Calling
RefreshDCPowerDistributionUnitsAsync, and Reading Current and
Voltage Sensors for all DC Power Outlets

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the objects of ACPDU component

 IACPowerDistributionUnit[] acPowerDistributionUnits =

ateCoreSession.ACPowerDistributionUnits;

 foreach (var acPowerDistributionUnit in acPowerDistributionUnits)

 {

 // Print some of the properties of the component

 Console.WriteLine("AC power distribution unit name: {0}",

acPowerDistributionUnit.Name);

 Console.WriteLine("AC power distribution unit location: {0}",

acPowerDistributionUnit.Location);

 Console.WriteLine("AC power distribution unit vendor name: {0}",

acPowerDistributionUnit.VendorName);

 Console.WriteLine("AC power distribution unit model name: {0}",

acPowerDistributionUnit.ModelName);

 Console.WriteLine("AC power distribution unit serial number: {0}",

acPowerDistributionUnit.SerialNumber);

 Console.WriteLine("AC power distribution unit firmware version:

{0}", acPowerDistributionUnit.FirmwareVersion);

 foreach (var powerBank in acPowerDistributionUnit.PowerBanks)

 {

 if (await powerBank.GetPowerBankState() == PowerState.On)

 {

 Console.WriteLine(powerBank.BankNumber);

 foreach (var outletCurrentSensor in

powerBank.OutletCurrentSensors)

Note DC PDU control and sensor readings are only accessible when the
ATECCGEN2 rack is in the Running power state. When the rack is not in the
Running power state, attempting to read a sensor returns Double.NaN
and attempting to enable or disable an outlet triggers an exception.

Components and Sensors

© National Instruments 17

 {

 Console.WriteLine("Outlet number: {0}",

outletCurrentSensor.OutletNumber);

 Console.WriteLine("Current sensor reading:

{0} A", await outletCurrentSensor.ReadSensorAsync());

 }

 }

 }

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Power Entry Panel (PEP) Power Entry Panel (PEP)
The power entry panel is the main AC power input to the ATECCGEN2 rack. It consists
of a three-phase AC power supply or a single-phase AC power supply depending on the
rack variant. You can take sensor readings to monitor the status of AC power supply for
a particular power phase.

Reading the Sensors on the Single-Phase Power Entry Panel

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the object of Power Entry Panel component

 IPowerPanelEntry powerPanelEntry = ateCoreSession.PowerEntryPanel;

 Console.WriteLine("Power panel entry name: {0}", powerPanelEntry.Name);

 Console.WriteLine("Power panel entry location: {0}",

Components and Sensors

18 ni.com

powerPanelEntry.Location);

 Console.WriteLine("Power panel entry vendor name: {0}",

powerPanelEntry.VendorName);

 Console.WriteLine("Power panel entry model name: {0}",

powerPanelEntry.ModelName);

 foreach (var temperatureSensor in powerPanelEntry.TemperatureSensors)

 {

 Console.WriteLine("Temperature sensor name: {0}", await

temperatureSensor.Name);

 Console.WriteLine("Temperature sensor reading: {0} degree C", await

temperatureSensor.ReadSensorAsync());

 }

 if (powerPanelEntry.PowerSupplyPhaseType ==

PowerSupplyPhaseType.SinglePhase)

 {

 // Only one powerPhase object (phase A) in the PowerPhases array

 // in powerPanelEntry for single-phase

 IPowerPhase powerPhase = powerPanelEntry.PowerPhases[0];

 if (PowerState.On == await powerPhase.GetPowerPhaseStateAsync())

 {

 int numberOfSensors = powerPhase.VoltageSensors.Length;

 Console.WriteLine("Power phase type: {0}",

powerPhase.PhaseType.ToString());

 // The number of sensors are same across all sensor type in

power phase object

 for (int i=0; i<numberOfSensors; i++)

 {

 Console.WriteLine("Voltage sensor reading: {0} V",

await powerPhase.VoltageSensors[i].ReadSensorAsync());

 Console.WriteLine("Current sensor reading: {0} A",

await powerPhase.CurrentSensors[i].ReadSensorAsync());

 Console.WriteLine("Temperature sensor reading: {0}

degree C", await powerPhase.LineFrequencySensors[i].ReadSensorAsync());

 }

 }

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

Components and Sensors

© National Instruments 19

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Reading the Sensors on the Three-Phase Power Entry Panel

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the object of Power Entry Panel component

 IPowerPanelEntry powerPanelEntry = ateCoreSession.PowerEntryPanel;

 Console.WriteLine("Power panel entry name: {0}", powerPanelEntry.Name);

 Console.WriteLine("Power panel entry location: {0}",

powerPanelEntry.Location);

 Console.WriteLine("Power panel entry vendor name: {0}",

powerPanelEntry.VendorName);

 Console.WriteLine("Power panel entry model name: {0}",

powerPanelEntry.ModelName);

 foreach (var temperatureSensor in powerPanelEntry.TemperatureSensors)

 {

 Console.WriteLine("Temperature sensor name: {0}", await

temperatureSensor.Name);

 Console.WriteLine("Temperature sensor reading: {0} degree C", await

temperatureSensor.ReadSensorAsync());

 }

 if (powerPanelEntry.PowerSupplyPhaseType ==

PowerSupplyPhaseType.SinglePhase)

 {

 // Only one powerPhase object (phase A) in the PowerPhases array

 // in powerPanelEntry for single-phase

 IPowerPhase powerPhase = powerPanelEntry.PowerPhases[0];

 if (PowerState.On == await powerPhase.GetPowerPhaseStateAsync())

 {

Components and Sensors

20 ni.com

 int numberOfSensors = powerPhase.VoltageSensors.Length;

 Console.WriteLine("Power phase type: {0}",

powerPhase.PhaseType.ToString());

 // The number of sensors are same across all sensor type in

power phase object

 for (int i=0; i<numberOfSensors; i++)

 {

 Console.WriteLine("Voltage sensor reading: {0} V",

await powerPhase.VoltageSensors[i].ReadSensorAsync());

 Console.WriteLine("Current sensor reading: {0} A",

await powerPhase.CurrentSensors[i].ReadSensorAsync());

 Console.WriteLine("Temperature sensor reading: {0}

degree C", await powerPhase.LineFrequencySensors[i].ReadSensorAsync());

 }

 }

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Rack Control Unit Rack Control Unit
The rack control unit (RCU) communicates with components and sensors using
internal electrical buses and communicates with hosts using a network connection.
The RCU has various onboard sensors including current sensors, voltage sensors, and
temperature sensors.

Reading the Properties and Sensors from the Rack Control Unit

IAteCoreSession ateCoreSession;

try

Components and Sensors

© National Instruments 21

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the object of RCU component

 IRackControlUnit rackControlUnit = ateCoreSession.RackControlUnit;

 Console.WriteLine("Rack control unit name: {0}", rackControlUnit.Name);

 Console.WriteLine("Rack control unit location: {0}",

rackControlUnit.Location);

 Console.WriteLine("Rack control unit vendor name: {0}",

rackControlUnit.VendorName);

 Console.WriteLine("Rack control unit model name: {0}",

rackControlUnit.ModelName);

 Console.WriteLine("Rack control unit serial number: {0}",

rackControlUnit.SerialNumber);

 Console.WriteLine("Rack control unit firmware version: {0}",

rackControlUnit.FirmwareVersion);

 foreach (var currentSensor in rackControlUnit.CurrentSensors)

 {

 Console.WriteLine("Current sensor name: {0}", currentSensor.Name);

 Console.WriteLine("Current sensor reading: {0} A", await

currentSensor.ReadSensorAsync());

 }

 foreach (var voltageSensor in rackControlUnit.VoltageSensors)

 {

 Console.WriteLine("Voltage sensor name: {0}", voltageSensor.Name);

 Console.WriteLine("Voltage sensor reading: {0} V", await

voltageSensor.ReadSensorAsync());

 }

 foreach (var temperatureSensor in rackControlUnit.TemperatureSensors)

 {

 Console.WriteLine("Temperature sensor name: {0}",

temperatureSensor.Name);

 Console.WriteLine("Temperature sensor reading: {0} degree C", await

temperatureSensor.ReadSensorAsync());

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

Components and Sensors

22 ni.com

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Fan Domain and Fan Panel Fan Domain and Fan Panel
A fan domain is an area where fan panels are installed. Each fan domain contains a list
of fan panels. Each fan panel contains a list of fans and temperature sensors. To
control the fan speed, call SetFanDomainModeAsync and pass the expected mode
from FanDomainMode as an input parameter to change the fan speed.

• FanDomainMode.High: the fan speed is set to FanDomainMaxRpm for the fans
in the fan panels of the target fan domain.

• FanDomainMode.Manual: the fan speed is set to the user-defined fan RPM. To
set a user-defined fan speed, call SetFanDomainUserDefinedRpmAsync.

Reading Temperature Sensors and Fan Speeds from All Fan Domains

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the objects of Fan Domain.

Note If the fan domain mode is set to FanDomainMode.Manual when
a user-defined RPM is not set, the fan RPM will be set to
FanDomainMinRpm. The user-defined RPM cannot be set higher than
FanDomainMaxRpm or lower than FanDomainMinRpm.

Note When the RCU is in standby mode, querying the fan RPM using
ReadRpmAsync may return an incorrect value of 4294967295. This
value is generated by the default hardware behavior and can be
disregarded.

Components and Sensors

© National Instruments 23

 IFanDomain[] fanDomains = ateCoreSession.FanDomains;

 foreach (var domain in fanDomains)

 {

 Console.WriteLine("Fan domain type: {0}",

domain.FanDomainType.ToString());

 foreach(var fanPanel in domain.FanPanels)

 {

 Console.WriteLine("Fan panel name: {0}", fanPanel.Name);

 Console.WriteLine("Fan panel location: {0}",

fanPanel.Location);

 Console.WriteLine("Fan panel vendor name: {0}",

fanPanel.VendorName);

 Console.WriteLine("Fan panel model name: {0}",

fanPanel.ModelName);

 Console.WriteLine("Fan panel serial number: {0}",

fanPanel.SerialNumber);

 foreach(var temperatureSensor in

fanPanel.TemperatureSensors)

 {

 Console.WriteLine("Temperature sensor name: {0}",

temperatureSensor.Name);

 Console.WriteLine("Temperature sensor reading: {0}

degree C", await temperatureSensor.ReadSensorAsync());

 }

 foreach(var fan in fanPanel.Fans)

 {

 Console.WriteLine("Fan name: {0}", fan.Name);

 Console.WriteLine("Fan speed reading: {0} RPM",

await fan.ReadRpmAsync());

 }

 }

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

Components and Sensors

24 ni.com

 ateCoreSession.Dispose();

 }

}

Uninterruptable Power Supply Uninterruptable Power Supply
The uninterruptable power supply (UPS) provides backup power to the rack in the
event of power outages or fluctuations.

Once you install a UPS in your ATE Core Configurations Generation 2 system, use the
RegisterUninterruptablePowerSupplyAsync function to register the UPS
to the system. After registering the UPS, use the
SetMinimumInputVoltageAsync and SetMaximumInputVoltageAsync
functions to set the rated minimum and maximum input voltages for the UPS.

You can use the UnregisterUninterruptiblePowerSupplyAsync function
to unregister an installed UPS before uninstalling it.

Registering a UPS and Setting the Maximum and Minimum Input Voltages

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Register a UPS installed on Phase A, outlet 1 to ATECCGEN2 rack

 await

ateCoreSession.RegisterUninterruptiblePowerSupplyAsync(PowerPhaseType.PhaseA, 1);

 // Set the maximum and minimum input voltages of UPS

 foreach (var uninterruptiblePowerSupply in

Note After you register a UPS, UPS-related monitoring features do not start
until the rack is rebooted.

Note You must unregister an installed UPS using
UnregisterUninterruptiblePowerSupplyAsync before powering
down the UPS and physically removing it from the rack.

Components and Sensors

© National Instruments 25

ateCoreSession.UninterruptiblePowerSupplies)

 {

 if (uninterruptiblePowerSupply.PoweredPhase ==

PowerPhaseType.PhaseA)

 {

 await

uninterruptiblePowerSupply.SetMaximumInputVoltageAsync(250);

 await

uninterruptiblePowerSupply.SetMinimumInputVoltageAsync(210);

 }

 }

 Console.WriteLine("Successfully registered UPS to system.");

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Unregistering a UPS

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Unregister a UPS installed on Phase A, outlet 1 from ATECCGEN2 rack

 await

ateCoreSession.UnregisterUninterruptiblePowerSupplyAsync(PowerPhaseType.PhaseA, 1);

 Console.WriteLine("Successfully unregistered UPS from system.");

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

Components and Sensors

26 ni.com

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Checking if the ATECC Gen 2 System is Running on UPS Power

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Check if ATECCGEN2 is on UPS power or facility power

 bool isOnUpsPower = await ateCoreSession.IsRackOnUpsPowerAsync();

 Console.WriteLine("The rack is powered by UPS: {0}", isOnUpsPower);

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Rack Temperature Sensor Unit Rack Temperature Sensor Unit
Rack temperature sensor units are installed at different locations to monitor
temperatures throughout the ATECCGEN2 rack. Rack temperature sensor units are
accessible via the IRackTemperatureSensorUnit interface.

Components and Sensors

© National Instruments 27

Getting Temperature Sensor Readings from All Rack Temperature Sensor
Units

IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Get the objects of rack temperature sensor component

 IRackTemperatureSensorUnit[] rackTemperatureSensorUnits =

ateCoreSession.RackTemperatureSensorUnits;

 foreach (var rackTemperatureSensorUnit in rackTemperatureSensorUnits)

 {

 Console.WriteLine("Rack temperature sensor unit name: {0}",

rackTemperatureSensorUnit.Name);

 Console.WriteLine("Rack temperature sensor unit location: {0}",

rackTemperatureSensorUnit.Location);

 Console.WriteLine("Rack temperature sensor unit vendor name: {0}",

rackTemperatureSensorUnit.VendorName);

 Console.WriteLine("Rack temperature sensor unit model name: {0}",

rackTemperatureSensorUnit.ModelName);

 var tempSensor = rackTemperatureSensorUnit.TemperatureSensor;

 Console.WriteLine("Temperature sensor reading: {0} degree C", await

tempSensor.ReadSensorAsync());

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Components and Sensors

28 ni.com

Getting Safety Interlock Status Getting Safety Interlock Status
Call IsInterlockClosedAsync to read the signal state for safety interlocks
monitored by the RCU. Call IsInterlockDipSwitchClosedAsync to read the
DIP switch state for the safety interlocks monitored by the RCU.

Get the Interlock Connection Status
IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Loop through the enum values of Interlock

 foreach (Interlock interlock in Enum.GetValues(typeof(Interlock)))

 {

 bool isClosed = await

ateCoreSession.IsInterlockClosedAsync(interlock);

 Console.WriteLine("The {0} is closed: {1}", interlock, isClosed);

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Get the Interlock DIP Switch States
IAteCoreSession ateCoreSession;

try

{

Getting Safety Interlock Status

© National Instruments 29

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Loop through the enum values of InterlockDipSwitch

 foreach (InterlockDipSwitch dipSwitch in

Enum.GetValues(typeof(InterlockDipSwitch)))

 {

 bool isClosed = await

ateCoreSession.IsInterlockDipSwitchClosedAsync(dipSwitch);

 Console.WriteLine("The {0} is closed: {1}", dipSwitch, isClosed);

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Related information:

• RMX-10101/10102 Safety Interlocks in the ATE Core Configurations Generation 2
User Manual

Getting Safety Interlock Status

30 ni.com

https://www.ni.com/docs/csh?pubname=rmx101xxum&topicname=rcu.html
https://www.ni.com/docs/csh?pubname=rmx101xxum&topicname=rcu.html

Get or Set System State or Power State (Run Get or Set System State or Power State (Run
Remotely) Remotely)
The GetRackSystemStateAsync function returns the current rack system state as
a RackSystemState enum. The GetRackPowerStateAsync function returns
the rack power state as a RackPowerState enum. You can can use this function, for
example, to remotely change the ATECCGEN2 rack power state from Standby to
Running.

When the rack is turned on and initialized, the RCU service cycles through the system
states of Inactive, Init1 and Init2 before reaching the Operational system
state. During rack initialization, the rack power state is set to
RackControlUnitBooting. When the rack system state reaches the
Operational state, the rack power state is set to Standby.

In the Standby power state, the rack does not supply power to the payloads. Pressing
the power button on the rack or programmatically calling the
SetRackPowerStateToRunningAsync function from a host changes the rack
power state to Running and the system supplies power to the payloads.

To stop the system from supplying power to any payloads and return to the Standby
power state from the Running power state, press the power button or
programmatically call the SetRackPowerStateToStandbyAsync function.

Performing a Full Restart and Getting the System
State
IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Perform a full restart

Get or Set System State or Power State (Run Remotely)

© National Instruments 31

 await

ateCoreSession.InitiateRackRestartAsync(RackRestartLevel.FullRestart); // Dispose

ateCoreSession will be handled in InitiateRackRestartAsync

 Stopwatch stopWatch = new Stopwatch();

 stopWatch.Start();

 while (true)

 {

 try

 {

 ateCoreSession = await

AteCoreSession.CreateAteCoreSessionAsync(hostname, password);

 break;

 }

 catch

 {

 // Give some time (30 seconds) for a full restart

 if (stopWatch.ElapsedMilliseconds > 30000)

 {

 throw new TimeoutException();

 }

 }

 }

 stopWatch.Stop();

 stopWatch.Restart();

 while (await ateCoreSession.GetRackSystemStateAsync() !=

RackSystemState.Operational)

 {

 // throw if the ATECCGEN2 hasn't moved to Operational system state

over 5 seconds

 if (stopWatch.ElapsedMilliseconds > 5000)

 {

 throw new TimeoutException();

 }

 }

 stopWatch.Stop();

 // Proceed with other operations after ATECCGEN2 is in an operational

system state.

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

Get or Set System State or Power State (Run Remotely)

32 ni.com

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Get and Set the Rack Power State
IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Set the ATECCGEN2 Power State to Running when it is in Standby

 if (await ateCoreSession.GetRackPowerStateAsync() ==

RackPowerState.Standby)

 {

 await ateCoreSession.SetRackPowerStateToRunningAsync();

 // Call other functions to perform operations that require Power

State Running on ATECCGEN2.

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Related reference:

• Rack System State and Rack Power State Descriptions

Get or Set System State or Power State (Run Remotely)

© National Instruments 33

Triggering a Full Restart or Service-Level Triggering a Full Restart or Service-Level
Restart Restart
Call InitiateRackRestartAsync with the input parameter
RackRestartLevel.FullRestart to trigger a full restart, or
RackRestartLevel.ServiceLevelRestart to trigger a service-level restart.
The InitiateRackRestartAsync function internally calls
IAteCoreSession.Dispose so you do not need to explicitly call the Dispose
function.

Restarting the RCU Service
IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Perform a full restart

 await ateCoreSession.InitiateRackRestartAsync(RackRestartLevel.

ServiceLevelRestart); // Dispose ateCoreSession will be handled in

InitiateRackRestartAsync

 Stopwatch stopWatch = new Stopwatch();

 stopWatch.Start();

 while (true)

 {

 try

 {

 ateCoreSession = await

AteCoreSession.CreateAteCoreSessionAsync(hostname, password);

 break;

 }

 catch

 {

 // Timeout after 20 seconds.

 if (stopWatch.ElapsedMilliseconds > 20* 1000)

 {

 throw new TimeoutException();

 }

Triggering a Full Restart or Service-Level Restart

34 ni.com

 }

 }

 stopWatch.Stop();

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Related reference:

• Full Restart and RCU Service-Level Restart Descriptions

Triggering a Full Restart or Service-Level Restart

© National Instruments 35

Control the Rack Tower Light Control the Rack Tower Light
An optional tower light kit is available for the ATECCGEN2 rack. The tower light can be
controlled using the SetTowerLightAsync() method. Each tower light segment
can be independently controlled using the TowerLight enum. TowerLightRed,
TowerLightAmber, TowerLightGreen, TowerLightBlue, and
TowerLightWhite control the LED segments and TowerLightBuzz controls the
tower light buzzer. TowerLightAll provides the option to switch off all segments.

Controlling Tower Lights
IAteCoreSession ateCoreSession;

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 // Reset Tower Light before turn on any Tower Light

 await ateCoreSession.SetTowerLightAsync(TowerLight.TowerLightAll, false);

 // Examples of setting Tower Light based on conditions

 if (failure conditions such as an emergency stop or machine fault)

 {

 // Turned On Tower Light Red

 await ateCoreSession.SetTowerLightAsync(TowerLight.TowerLightRed,

true);

 }

 else if (warnings such as over-temperature or over-pressure conditions)

 {

 // Turned On Tower Light Amber

 await ateCoreSession.SetTowerLightAsync(TowerLight.TowerLightAmber,

true);

 }

 else if (normal machine or process operation)

 {

 // Turned On Tower Light Green

 await ateCoreSession.SetTowerLightAsync(TowerLight.TowerLightGreen,

true);

 }

 else if (external help request, scheduling or maintenance personnel

Control the Rack Tower Light

36 ni.com

assistance)

 {

 // Turned On Tower Light Blue

 await ateCoreSession.SetTowerLightAsync(TowerLight.TowerLightBlue,

true);

 }

 else if (user-defined conditions, machine is running on a custom user-

defined command set)

 {

 // Turned On Tower Light White

 await ateCoreSession.SetTowerLightAsync(TowerLight.TowerLightWhite,

true);

 }

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Control the Rack Tower Light

© National Instruments 37

Updating Firmware Updating Firmware
To apply a firmware update to the rack control unit, call the
UpdateFirmwareAsync function and pass in the full firmware file path as an input
parameter.

If the UpdateFirmwareAsync function succeeds, perform a full restart by calling
the InitiateRackRestartAsync function with
RackRestartLevel.FullRestart as the input parameter.

After the full restart, call GetFirmwareUpdateStatusAsync to check the
firmware update status. If the return value evaluates to
FirmwareUpdateStatus.Succeeded, the firmware update succeeded and the
new firmware is running. If the returned value evaluates to
FirmwareUpdateStatus.Failed, the firmware update failed and the system has
rolled back to the previous firmware.

Updating Rack Firmware
IAteCoreSession ateCoreSession;

// New firmware file to update to

string firmwareFilePath = " C:\\new_rack_firmware_version_1.bin ";

try

{

 // To create an object of IAteCoreSession.

 ateCoreSession = await AteCoreSession.CreateAteCoreSessionAsync(hostname,

password);

 await ateCoreSession.UpdateFirmwareAsync(firmwareFilePath);

 // Perform a full restart

 await

Note Download the firmware update file from ni.com/downloads.

Note The firmware file must have a .bin file extension to prevent
UpdateFirmwareAsync from throwing an exception.

Updating Firmware

38 ni.com

ateCoreSession.InitiateRackRestartAsync(RackRestartLevel.FullRestart); // Dispose

ateCoreSession will be handled in InitiateRackRestartAsync

 Stopwatch stopWatch = new Stopwatch();

 stopWatch.Start();

 while (true)

 {

 try

 {

 ateCoreSession = await

AteCoreSession.CreateAteCoreSessionAsync(hostname, password);

 break;

 }

 catch

 {

 // For full restart after firmware update, it takes longer

time to restart, timeout after 2 mins.

 if (stopWatch.Elapsed.TotalSeconds > 2 * 60)

 {

 throw new TimeoutException();

 }

 }

 }

 stopWatch.Stop();

 stopWatch.Restart();

 while (await ateCoreSession.GetRackSystemStateAsync() !=

RackSystemState.Operational)

 {

 // throw if the ATECCGEN2 hasn't moved to Operational system state

over 5 seconds

 if (stopWatch.ElapsedMilliseconds > 5000)

 {

 throw new TimeoutException();

 }

 }

 stopWatch.Stop();

 FirmwareUpdateStatus firmwareUpdateStatus = await

ateCoreSession.GetFirmwareUpdateStatusAsync();

 if (FirmwareUpdateStatus.Succeeded != firmwareUpdateStatus)

 {

 throw new Exception("Firmware update failed.");

 }

 // Get the object of RCU component

 IRackControlUnit rackControlUnit = ateCoreSession.RackControlUnit;

 // Print new firmware version

Updating Firmware

© National Instruments 39

 Console.WriteLine("Rack control unit firmware version: {0}",

rackControlUnit.FirmwareVersion);

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (ateCoreSession != null)

 {

 // To close the session.

 ateCoreSession.Dispose();

 }

}

Related information:

• RMX-1010x Firmware Download

Updating Firmware

40 ni.com

https://www.ni.com/en/support/downloads/software-products/download.rmx-1010x-firmware.html#551607

Rack System State and Rack Power State Rack System State and Rack Power State
Descriptions Descriptions
When a user powers on the ATECCGEN2 rack, the Rack Control Unit (RCU) loads
firmware and runs the RCU service. The RCU service begins initializing components in
the rack, enabling gRPC server communication, enabling RCU service status logging,
and enabling system monitoring and control. The RCU service reports four system
states during the initialization process: Inactive, Init1, Init2, and
Operational. When the RCU service is terminated, it transitions from the
Operational system state to the Deactivating system state and then the
Inactive system state. In the event of an unrecoverable error in the system, the RCU
service enters the Halt system state.

System and Power State Transitions

The following figure illustrates rack system state and simplified power states
transitions.

Figure 1. System and Power States

Inactive

1

Init1 Init2 Operational

Deactivating

Halt

Standby

Running

Asynchronous
Deactivation

Catastrophic
Error

Start RCU
Service

EMO

2

RCU Booting

Unconditional
Transition

Unconditional
Transition

1. Exception-triggered transition
2. Emergency off (EMO) transition

• Inactive—The RCU service is not running. The gRPC server communication and
RCU service status logging are not available. The system transitions to the Init1
state after the RCU service starts.

• Init1—The RCU service starts and initializes basic devices on the system, including
the status LED. The gRPC server communication is started and RCU service status

Rack System State and Rack Power State Descriptions

© National Instruments 41

logging is enabled. The system automatically transitions to the Init2 state after
the initialization is completed

• Init2—The RCU service completes the remaining devices initialization and starts
the rack health monitoring. The system automatically transitions to
Operational state after the initialization is completed.

• Operational—The system is fully operational. The power state is either Running
or Standby.
1. The rack power state starts with the Standby state where the rack does not

supply power to the payloads.
2. When the rack power state is in Standby state, pressing the power button on

the rack or programmatically calling the
SetRackPowerStateToRunningAsync function from a host changes the
rack power state to Running and the system supplies power to payloads.

3. When the rack power state is in Running state, pressing the power button or
programmatically calling the SetRackPowerStateToStandbyAsync
function from a host causes the system to turn off power supplies to the
payloads and changes the rack power state to Standby.

4. If a catastrophic event happens when the rack power state is in Running
state, pressing the Emergency Off Button (EMO) immediately causes the
system to turn off all power supplies to payloads and the system
unconditionally transitions to the Standby power state. The system remains
in Standby state until the RCU service is terminated or encounters a
catastrophic error.

• Deactivating—When the RCU service is terminated asynchronously by calling the
InitiateRackRestartAsync function from a host, the RCU service enters the
Deactivating state before going into the Inactive state. All running tasks
are terminated and resources are freed before the RCU service exits.

• Halt—the RCU service enters the Halt state in the event of an unrecoverable
system error. The Halt state persists indefinitely until the system is deactivated
asynchronously.

In the Halt state the system terminates most of the services except for the gRPC
server to allow host communication and RCU service status logging. The RCU
service may also transition to this state in the event of critical errors in the Init1,
Init2 or Operational system states.

Related reference:

Rack System State and Rack Power State Descriptions

42 ni.com

• Get or Set System State or Power State (Run Remotely)

Related information:

• Power Entry Panel (in ATE Core Configurations Generation 2 User Manual)

Rack System State and Rack Power State Descriptions

© National Instruments 43

https://www.ni.com/docs/csh?pubname=ateccgen2um&topicname=pep.html

Full Restart and RCU Service-Level Restart Full Restart and RCU Service-Level Restart
Descriptions Descriptions
Call InitiateRackRestartAsync to reboot the system or restart the RCU service
as necessary (for example, to complete a firmware update).

Service-Level Restart Actions

During a service-level restart, only the RCU service is restarted. The restart sequence
and effects are as follows:

1. If the rack is in the Running power state, the rack power state transitions from
Running to Standby.

2. The RCU service transitions to the Deactivating rack system state.
3. The RCU service transitions to the Inactive state, then proceeds through the

Init1 and Init2 states to the Operational state.
4. All errors or warnings detected by the RCU service are cleared.
5. All RCU service resources are released during termination and re-initialized when

the service runs.
6. The gRPC server is terminated and restarted.
7. The RCU service creates a new status log file.
8. The RCU service reinitializes the rack.

Full Restart Actions

During a full restart, the embedded RCU operating system is rebooted. The restart
sequence and effects are as follows:

1. The sequence and all effects of the service-level restart occur.
2. The RCU processor is reset.
3. All firmware in the rack is restarted.
4. The network connection is disconnected and reinitialized.

Related reference:

Full Restart and RCU Service-Level Restart Descriptions

44 ni.com

• Triggering a Full Restart or Service-Level Restart

Full Restart and RCU Service-Level Restart Descriptions

© National Instruments 45

Credential Management Credential Management
The remote communication channel between a host and the RCU is encrypted using
TLS. Each ATECCGEN2 rack has a default private key and a public certificate. To
communicate with the rack the host must have the TLS public certificate, which can be
obtained from the RCU via FTP service. The RCU is also password protected, meaning a
password is required for communication via API. Each rack has a unique default
password, which you should change for security purposes.

Default Host Name

An application uses NI-ATE Core to control a rack identified by the host name or IP
address of the rack. The rack host name is ni-rmx-1010x-<serial> where
<serial> is the serial number of the RCU. If the serial number has less than eight
characters, 0 characters are inserted before the serial number to produce the
minimum length of eight characters.

The example 7-digit serial number 217D902 produces a host name of ni-
rmx-1010x-0217d902

Default Password

The default password is unique and generated based on the serial number of the RCU.
The default password consists of eight hexadecimal characters (0 to 9, a to f, lower
case). If the serial number has less than eight characters, 0 characters are inserted
before the serial number to produce the minimum length of eight characters.

The example 7-digit serial number 217D902 produces a default password of
0217d902.

Changing the Password

Call ChangeRackPasswordAsync to change the password. You must provide the
existing password and the new password. The new password takes effect once the
existing password is verified.

Credential Management

46 ni.com

Remembering Passwords
When connecting to a target rack for the first time using the
CreateAteCoreSessionAsync function, you can instruct the NI-ATE Core driver
to save the password you use to connect by setting the rememberPassword
parameter to true. After you set rememberPassword to true, NI-ATE Core uses
the previously saved password when connecting to the target if you pass an empty
string as the password parameter on subsequent connections to the target.

You can also use the PasswordManager class function
SetSavedPasswordAsync to save a password for a specified target or update the
target password if you already saved one.

Setting or Changing a Saved Password
PasswordManager passwordManager = new PasswordManager();

try

{

 // Change saved password

 await passwordManager.SetSavedPasswordAsync(hostname, password);

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (passwordManager != null)

 {

 // To close the session.

 passwordManager.Dispose();

 }

}

Deleting Saved Passwords

You can delete a password saved to a target rack by calling the PasswordManager

Note The saved password is stored securely on the host machine and is not
accessible by other users of the same machine or other host machines.

Credential Management

© National Instruments 47

class function DeleteSavedPasswordAsync. You must provide a password when
connecting to the target rack using CreateAteCoreSessionAsync after deleting
the saved rack password.

Deleting a Saved Password
PasswordManager passwordManager = new PasswordManager();

try

{

 // Delete saved password

 await passwordManager.DeleteSavedPasswordAsync(hostname);

}

catch(Exception ex)

{

 Console.WriteLine(ex.Message); //Print the exception message.

}

finally

{

 if (passwordManager != null)

 {

 // To close the session.

 passwordManager.Dispose();

 }

}

Generating TLS Private Key and Public Certificate Pairs

Call GenerateAndApplyCertificateKeyPairAsync to generate new key
pairs. The RCU generates and applies a new private key and public certificate pair and
returns the new public certificate to the host. You must reboot the rack and create a
new session for the new key pairs to take effect.

Manually Retrieving the Effective Certificate

In the event of a key pair mismatch you can copy the effective certificate to replace the
public certificate on the host. You must also complete this process when you have
generated a key pair and you want to control the rack from a new host, or you want to
reinstall NI-ATE Core driver software.

1. Retrieve the effective certificate from the RCU via FTP at the following path:

Credential Management

48 ni.com

/upload/tls_cert.pem.
2. Rename the certificate to ni_ate_core_cert.pem.
3. Move the certificate in the following folder: C:\ProgramData\National

Instruments\NI-ATE Core\.
4. Delete ni_ate_core_cert.pem.new from the same location, if it exists.

You can now use the API to generate a new key pair.

Related reference:

• Creating and Disposing of Sessions

Credential Management

© National Instruments 49

Log File Location and Behavior Log File Location and Behavior
Log files can be accessed via FTP at the following path: /upload/log. Log files are
stored in the rack system storage (MicroSD card), which is separate from RCU OS
storage.

Log File and Folder Size Limitations

The maximum log file size is 5 MB. When a log file size reaches the maximum file size, a
new log file is created and logging continues in the new log file. The maximum size of
the log folder is 2 GB. When the log folder reaches the maximum folder size, the oldest
log file is replaced.

© 2025 National Instruments Corporation.

Log File Location and Behavior

50 ni.com

	NI-ATE Core Overview
	Looking for something else?
	NI-ATE Core System Terminology
	NI-ATE Core System Components

	Installing NI-ATE Core
	NI-ATE Core New Features and Changes
	NI-ATE Core 2025 Q1 Changes
	NI-ATE Core 2024 Q4 Changes
	NI-ATE Core 2024 Q2 Changes
	NI-ATE Core 2024 Q1 Changes

	Namespace, Minimum .NET Framework Version, and Dependencies
	Dependencies

	Configuring a Basic C# Application in Visual Studio
	Creating and Disposing of Sessions
	Managing Errors and Exceptions
	Components and Sensors
	AC Power Distribution Unit (AC PDU)
	DC Power Distribution Unit (DC PDU)
	Power Entry Panel (PEP)
	Rack Control Unit
	Fan Domain and Fan Panel
	Uninterruptable Power Supply
	Rack Temperature Sensor Unit

	Getting Safety Interlock Status
	Get or Set System State or Power State (Run Remotely)
	Triggering a Full Restart or Service-Level Restart
	Control the Rack Tower Light
	Updating Firmware
	Rack System State and Rack Power State Descriptions
	System and Power State Transitions

	Full Restart and RCU Service-Level Restart Descriptions
	Service-Level Restart Actions
	Full Restart Actions

	Credential Management
	Default Host Name
	Default Password
	Changing the Password
	Remembering Passwords
	Deleting Saved Passwords
	Generating TLS Private Key and Public Certificate Pairs
	Manually Retrieving the Effective Certificate

	Log File Location and Behavior
	Log File and Folder Size Limitations

