

PXI-2568 Features

2025-03-26

n

Contents

PXI-2568 Overview

PXI-2568 Pinout

15-DPST Topology

	CHOWO		22	_	-			
COM0W0		43			- •-	+	- 1 -	——(CH0W1)
		44	23		-			CH1W0
	CH1W1)-		24	-	-• Ť		2	
COM1W1		45	25	•	•	+	3	(CH2W0)
COM2W1		46	23		•	_	4	(CH2W1)
	СНЗW0)-		26		•			
	COM3W1)-	14/	27		-• -		끧	
COM4W0		- 48			•	-	6	——(CH4W1)
COM4W1	CH4W1 -	49	28		-		7	CH5W0
	COM5W0)-		- 29		•			
COM5W1	CH6W0 -	50	30	-	-•		8	CH5W1
COM6W0		51			•	+	- 9	CH6W1
COM7W0		52	31		-		10	CH7W0
	CH7W1)-		32	-	-• Ť			
COM7W1		53	33	•	_ •		- 11 -	CH8W0
COM8W1		54			•	+	12	——(CH8W1)
	СН9W0	55	34		-•		13	
	COM9W1)-		35	—	-• Ť			
COM10W0		56	26	•	_ •	-	- 14	(CH10W0)
(COM10W1)		57			• •-	_	15	(CH11W0)
	(COM11W0)-	58	37		•		16	
	(CH12W0)-		38	-	•			
COM12W0		- 59	20	-	_ •	+	17	(CH12W1)
(COM13W0)		60	39		•	_	18	(CH13W0)
	(CH13W1)-	61	40		•			
	(COM14W0)-		41		-• -			
(COM14W1)		62			•	+	20	(CH14W1)
			42	\langle	₹.	+	21	(NC)
					\sim)		

Table 1. Signal Descriptions

Signal	Description
CH x W0	Wire 0 signal connection
CH x W1	Wire 1 signal connection
COM <i>x</i> W0	Routing destination for W0 on the corresponding channel
COM <i>x</i> W1	Routing destination for W1 on the corresponding channel
_	No connection

31-SPST Topology

Table 2. Signal Descriptions

Signal	Description
CH <i>x</i>	Signal connection
COM <i>x</i>	Routing destination for the corresponding channel

PXI-2568 Hardware Diagram

This figure shows the hardware diagram of the module.

Topologies

PXI-2568 15-DPST Topology

Module software name: 2568/15-DPST (NISWITCH_TOPOLOGY_2568_15_DPST)

The module is composed of 31 armature latching SPST relays.

For certain applications, you may need to increase the default settling time.

Note Switching inductive loads (for example, motors and solenoids) can produce high voltage transients in excess of the module's rated voltage. Without additional protection, these transients can interfere with module operation and impact relay life.

15-DPST Topology

Making a Connection

Both the scanning command, ch2->com2;, and the immediate operation, niSwitch Connect Channels VI or the niSwitch_Connect function with parameters ch2 and com2, result in the following connections:

- signal connected to CH2W0 is routed to COM2W0
- signal connected to CH2W1 is routed to COM2W1

PXI-2568 31-SPST Topology

Module software name: 2568/31-SPST (NISWITCH_TOPOLOGY_2568_31_SPST)

The module is composed of 31 armature latching SPST relays.

For certain applications, you may need to increase the default settling time.

Note Switching inductive loads (for example, motors and solenoids) can produce high voltage transients in excess of the module's rated voltage. Without additional protection, these transients can interfere with module operation and impact relay life.

31-SPST Topology

Making a Connection

You can control the channels using the niSwitch Connect Channels VI or the niSwitch Connect function.

For example, to close the relay of channel 2, call niSwitch_Connect(vi, "ch2", "com2"). To open the relay of channel 2, call niSwitch_Disconnect(vi, "ch2", "com2").

When scanning the module, a typical scan list entry could be ch2->com2;. This entry closes the relay between CH2 and COM2.

PXI-2568 Relay Replacement

The module uses electromechanical armature relays.

Refer to the following table for information about ordering replacement relays.

Replacement Relay	Part Number
AXICOM (Tyco Electronics) (relay manufacturer)	IM42GR (3-1462037-1)
NI relay kit (10 relays)	779356-01

Ensure you have the following:

- Temperature-regulated soldering iron
 - Set to 371 °C (700 °F) for lead-free solder rework
 - Set to 316 °C (600 °F) for lead solder rework

- Solder
 - 96.5/3.0/0.5 Tin/Silver/Copper solder (flux core) for lead-free solder rework
 - 63/37 Tin/Lead solder (flux core) for lead solder rework
- Solder wick
- Fine pick
- Isopropyl alcohol
- Cotton swabs

Note NI recommends using lead-free solder for relay replacement on lead-free assemblies, and lead solder for relay replacement on lead assemblies.

Notice Do not rework lead assemblies using a lead-free work station. Lead solder from the unit could contaminate the station.

Notice If a lead-free assembly is reworked with lead solder, label the assembly to indicate this. This can prevent the same unit from being reworked later on a lead-free solder station, which could contaminate the station.

Complete the following sets of steps to disassemble your module and replace a failed relay.

1. Ground yourself using a grounding strap or a ground connected to your PXI chassis.

Note Properly grounding yourself prevents damage to your module from electrostatic discharge.

2. Locate the relay you want to replace. Refer to the following figure and table for relay locations.

							0
0							
K5	K10	K15	K20	K25	K30		
K4	K9	K14	K19	K24	K29		
K3	K8	K13	K18	K23	K28		
K2	K7	K12	K17	K22	K27		
K1	K6	K11	K16	K21	K26	K31	
0] 0

Channel Name	Relay Name	Channel Name	Relay Name
CH0	K1	CH16	K17
CH1	K2	CH17	K18
CH2	К3	CH18	K19
CH3	K4	CH19	K20
CH4	K5	CH20	K21
CH5	K6	CH21	K22
CH6	K7	CH22	K23
CH7	K8	CH23	K24
CH8	К9	CH24	K25
CH9	K10	CH25	K26
ch10	K11	CH26	K27
CH11	K12	CH27	K28
CH12	K13	CH28	K29
CH13	K14	CH29	K30
CH14	K15	CH30	K31
CH15	K16		

Note Older versions of this module might have adhesive plastic lead covers that you must remove. The module retains full specifications even if the covers are not reinstalled.

- 3. Locate the assembly and serial number labels on the board with the relay you want to replace.
 - Green labels indicate the board was assembled using lead-free solder
 (Sn 96.5Ag 3.0Cu 0.5). Lead-free assemblies have assembly numbers ending in
 L.

• White labels indicate the board was assembled using lead solder (Sn 63Pb 37). The different label types are shown in the following figure.

Lead-free	Lead
136FD67	136FD67
188504C-01L	(188504C-01)

If you have a surface mount rework station, replace the relay as you would any other surface mount part. Otherwise, complete the following steps to replace the relay:

1. Use the soldering iron and solder wick to remove as much solder from the relay pads as possible. Do not leave the soldering iron on any lead for more than 5 seconds.

Note If it is necessary to reapply the soldering iron to the pad, allow the connection to cool completely before reapplying the soldering iron.

2. Apply heat to the pads one at a time, and use the pick to gently pry the relay pins from the pads. Make sure that the solder is molten before prying.

Notice Using excessive force on a soldered pad can result in lifting the PCB trace and ruining the board.

- 3. Remove the relay.
- 4. Clean the pads with isopropyl alcohol and cotton swabs.
- 5. Place the new relay on the PCB pads and solder.
- 6. Remove the excess flux with isopropyl alcohol and cotton swabs.

Notice Do not use flux remover to clean the board after relay replacement.

Tip Use the NI-SWITCH Switch Soft Front Panel to reset the relay count after you have replaced a failed relay. Refer to the *Switch Soft Front Panel Help* for more information.