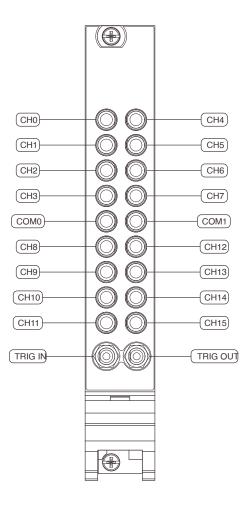
# PXI-2593 Features




# **Contents**

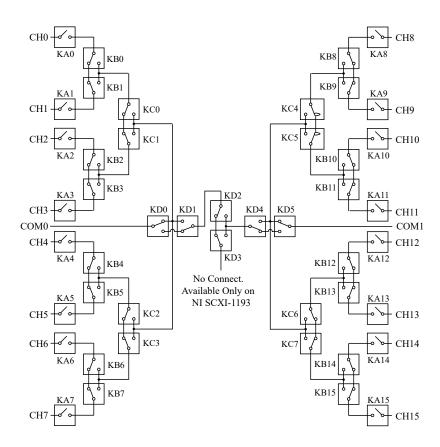
| DYL 2503 Overview   | · | 2 |
|---------------------|---|---|
| I MI-ZUUU OVEI VIEW |   | J |

## PXI-2593 Overview

#### PXI-2593 Pinout



**Table 1.** Signal Descriptions


| Signal       | Description                                              |
|--------------|----------------------------------------------------------|
| CH <b>x</b>  | Signal connection                                        |
| COM <b>x</b> | Routing destination for corresponding signal connections |
| TRIG IN      | Trigger input connection                                 |
| TRIG OUT     | Trigger output connection                                |

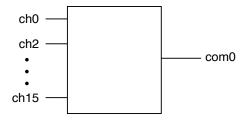
## **PXI-2593 Hardware Diagram**

This figure shows the hardware diagram of the module.

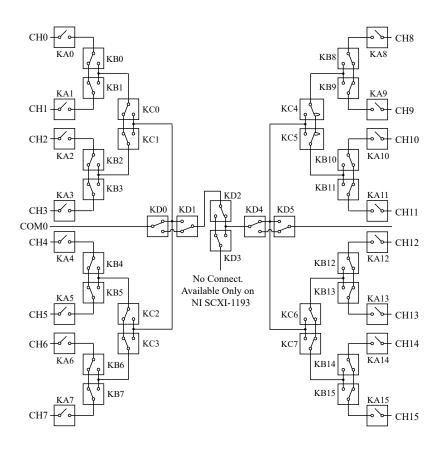


**Note** Relay names are the same for every topology.




## **PXI-2593 Topologies**

#### PXI-2593 16x1 Multiplexer


This figure describes the 16x1 multiplexer topology of the module.

Module software name: 2593/16x1 Mux (NISWITCH\_TOPOLOGY\_2593\_16X1\_MUX)

## 16x1 Multiplexer



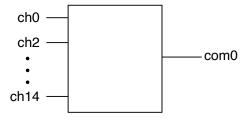
#### **16x1 Multiplexer Reset Position**



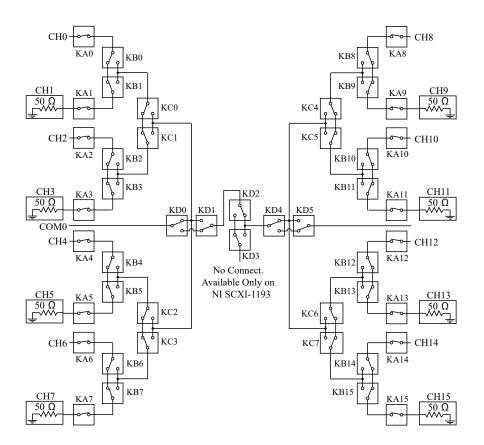
The module in this topology contains 16 channels connected to a common channel. These channels are referred to as ch<0..15>, and the common channel is referred to as com0. You can connect any channel to com0 in this topology.

#### **Making a Connection**

You can connect the channels of the module using the niSwitch Connect Channels VI or the niSwitch Connect function. For example, to connect channel 15 to common 0, call the niSwitch Connect Channels VI or the niSwitch Connect function with the channel 1 parameter set to ch15 and the channel 2 parameter set to com0.


When scanning the module, a typical scan list entry could be ch2->com0;. This entry routes the signal from ch2 to com0.

## PXI-2593 8x1 Terminated Multiplexer


This figure describes the 8x1 terminated multiplexer topology of the module.

Module software name: 2593/8x1 Terminated Mux (NISWITCH\_TOPOLOGY\_2593\_8X1\_TERMINATED\_MUX)

## 8x1 Multiplexer



## 8x1 Terminated Multiplexer Reset Position

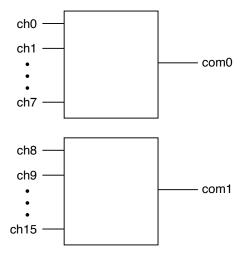


For proper termination, connect an external terminator, such as the 50  $\Omega$  MCX terminator (NI part number 778831-01), to every odd channel. Any input channel not connected to the COM is routed back to its associated termination channel.

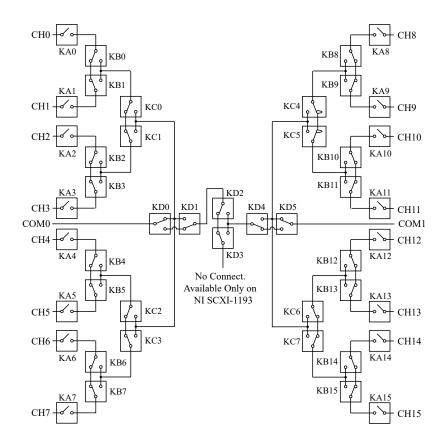
The module in this topology contains 8 channels connected to a common channel. These channels are referred to as ch<0..14>, and the common channel is referred to as com0. You can connect any even input channel to com0 in this topology.

#### **Making a Connection**

You can connect the channels of the module using the niSwitch Connect Channels VI or the niSwitch Connect function. For example, to connect channel 14 to common 0, call the niSwitch Connect Channels VI or the niSwitch Connect function with the channel 1 parameter set to ch14 and the channel 2 parameter set to com0.


When scanning the module, a typical scan list entry could be ch2->com0;. This entry routes the signal from ch2 to com0.

## PXI-2593 Dual 8x1 Multiplexer


This figure describes the dual 8x1 multiplexer topology of the module.

Module software name: Dual 8×1 Multiplexer: 2593/Dual 8x1 Mux (NISWITCH\_TOPOLOGY\_2593\_DUAL\_8X1\_MUX)

## Dual 8x1 Multiplexer



**Dual 8x1 Multiplexer Reset Position** 



#### **Making a Connection**

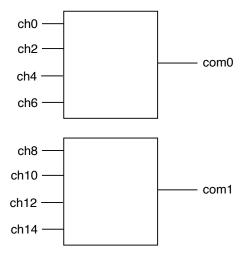
The module in this topology contains two banks of eight input channels connected to a common channel. These input channels are referred to as ch<0..15>, and the two common channels are referred to as com0 and com1. You can only connect to the common channel that is in the same bank. The banks are organized as follows:

| Input Channels                               | Common Channel |
|----------------------------------------------|----------------|
| ch0, ch1, ch2, ch3, ch4, ch5, ch6, ch7       | com0           |
| ch8, ch9, ch10, ch11, ch12, ch13, ch14, ch15 | com1           |

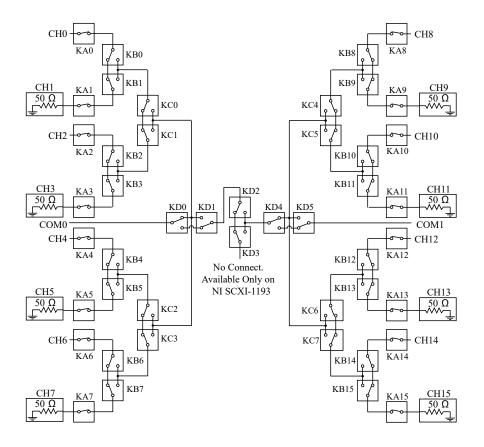
For example, you can connect ch7 to com0; however, you cannot connect ch7 to com1 in this topology.

You can connect the channels of the module using the niSwitch Connect Channels VI or the niSwitch Connect function. For example, to connect channel 15 to common 1, call the niSwitch Connect Channels VI or the niSwitch Connect

function with the **channel 1** parameter set to ch15 and the **channel 2** parameter set to com1.


When scanning the module, a typical scan list entry could be ch2 -> com0;. This entry routes the signal from ch2 to com0.

#### PXI-2593 Dual 4x1 Terminated Multiplexer


This figure describes the dual 4x1 terminated multiplexer topology of the module.

Module software name: 2593/Dual 4x1 Terminated Mux (NISWITCH\_TOPOLOGY\_2593\_DUAL\_4X1\_TERMINATED\_MUX)

#### **Dual 4x1 Terminated Multiplexer**



**Dual 4x1 Terminated Multiplexer Reset Position** 



#### **Making a Connection**

For proper termination, connect an external terminator, such as the 50  $\Omega$  MCX terminator (NI part number 778831-01), to every odd channel. Any input channel not connected to the COM is routed back to its associated termination channel.

The module in this topology contains two banks of four input channels connected to a common channel. These input channels are the even channels from channel 0 to channel 14. The two common channels are referred to as com0 and com1. You can only connect to the common channel that is in the same bank. The banks are organized as follows:

| Input Channels        | Common Channel |
|-----------------------|----------------|
| ch0, ch2, ch4, ch6    | com0           |
| ch8, ch10, ch12, ch14 | com1           |

For example, you can connect ch6 to com0; however, you cannot connect ch6 to com1

in this topology.

You can connect the channels of the module using the niSwitch Connect Channels VI or the niSwitch\_Connect function. For example, to connect channel 14 to common 1, call the niSwitch Connect Channels VI or the niSwitch\_Connect function with the channel 1 parameter set to ch14 and the channel 2 parameter set to com1.

When scanning the module, a typical scan list entry could be ch2->com0;. This disconnects ch2 from its termination and route it to com0.

#### **PXI-2593 Independent Topology**

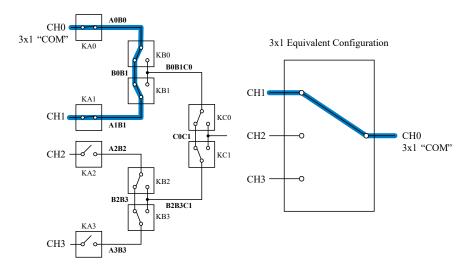
This figure describes the independent topology of the module.

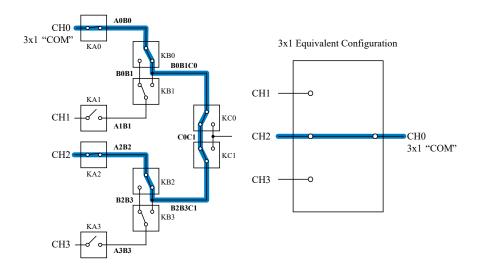
Module software name: 2593/Independent (NISWITCH\_TOPOLOGY\_2593\_INDEPENDENT)

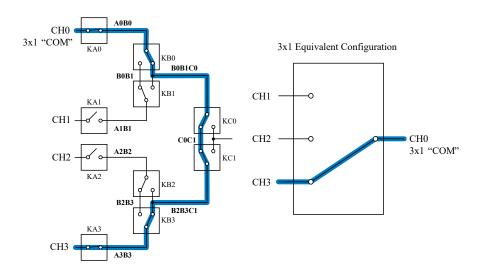
The module supports the independent topology, allowing you to utilize its full routing capabilities. Possible configurations include 3×1 multiplexers and dimensionally flexible sparse matrices.

#### 3×1 Multiplexers

The module can be configured as a 3×1 multiplexer.


Each group of four channels (0:3, 4:7, 8:11, etc.) can be configured as independent, unterminated 3×1 multiplexers. Choose one channel as the "common," and route it to the other three channels.


For example, choosing CH0 as a 3×1 common, route CH1, CH2, and CH3 to it with the command options described in the following table and figure.


| Route     | Connect / Disconnect Calls<br>Connection List   | Individual Relay Control     |
|-----------|-------------------------------------------------|------------------------------|
| CH0-> CH1 | CH0->A0B0, A0B0->B0B1,<br>B0B1->A1B1, A1B1->CH1 | Close KA0, KA1 Open KB0, KB1 |

| Route                                                                                  | Connect / Disconnect Calls<br>Connection List                                      | Individual Relay Control                           |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|--|
| CH0-> CH2                                                                              | CH0->A0B0, A0B0->B0B1C0,<br>B0B1C0->C0C1, C0C1->B2B3C1,<br>B2B3C1->A2B2, A2B2->CH2 | Close KA0, KB0, KA2, KB2 Open KB1*, KB3*, KC0, KC1 |  |
| CH0-> CH3                                                                              | CH0->A0B0, A0B0->B0B1C0,<br>B0B1C0->C0C1, C0C1->B2B3C1,<br>B2B3C1->A3B3, A3B3->CH3 | Close KA0, KB0, KA3, KB3 Open KB1*, KB2* KC0, KC1  |  |
| *Switch unused relays away from the signal path to improve high-frequency performance. |                                                                                    |                                                    |  |

Refer to the following figure for an example of a 3×1 configuration using CH0-CH3 on the module.







The module can be configured as quad 3×1 multiplexers using its 16 channels. The COM terminals are unused.

#### **Dimensionally Flexible Sparse Matrix**

The module architecture allows signals to be routed between any channel pair or common pair while maintaining >500 MHz bandwidth and minimizing RF stubs and reflections. The architecture provides more flexibility than traditional sparse matrices because the shape of the matrix is user-defined, and there is no restriction on row-to-row or column-to-column connections. For additional information about dimensionally flexible sparse matrices, refer to *Advanced Signal Routing with the NI PXI/PXIe-2593 and NI SCXI-1193 RF Switches* at ni.com/r/ex2qd9.

Figure 1. Routing Configuration

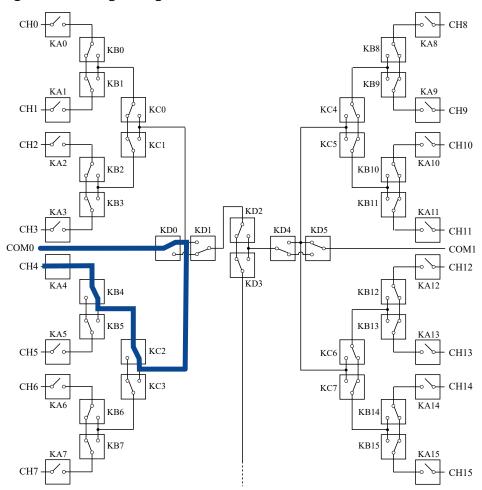
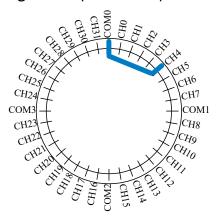




Figure 2. Equivalent Representation



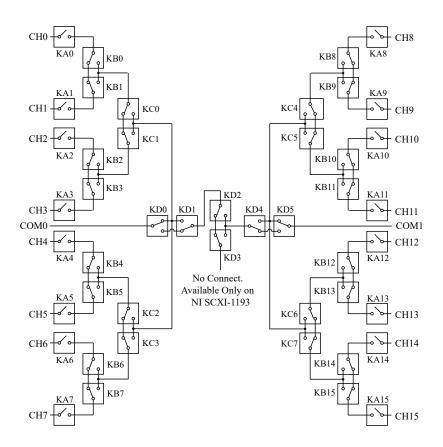
#### **Making a Connection**

Control the individual relays with the niSwitch Relay Control VI or the niSwitch RelayControl function (refer to the module hardware diagram for relay names). For example, to connect CH2 to COM0 on the module, call the niSwitch Relay Control VI or the niSwitch\_RelayControl function with relay action set to Relay Closed and relay name set to KAO. Repeat the call to the niSwitch Relay Control VI or the niSwitch RelayControl function to close KB1 then KCO.

When scanning the module, use the channel names in the scan list. A typical scan list entry could be ch2->com0;. This entry routes the signal connected to CH2 to COM0.

#### Valid Internal Channels

To determine the internal channel names, combine the names of all relays adjacent to a channel, in alphabetical order, and remove the K's. For example, the channel connecting KAO and KBO is called AOBO.


For example, to connect CH0 to COM0 using internal channel names, you need to call the following:

```
niSwitch_Connect (exampleSession, ch0, a0b0);

niSwitch_Connect (exampleSession, a0b0, b0b1c0);

niSwitch_Connect (exampleSession, b0b1c0, c0c1c2c3d0d1);

niSwitch_Connect (exampleSession, c0c1c2c3d0d1, com0);
```



#### The following is a list of the valid internal channel names:

| a0b0   | b0b1     | c0c1         | ch4    |
|--------|----------|--------------|--------|
| a10b10 | b0b1c0   | c0c1c2c3d0d1 | ch5    |
| a11b11 | b10b11   | c2c3         | ch6    |
| a12b12 | b10b11c5 | c4c5         | ch7    |
| a13b13 | b12b13   | c4c5c6c7d4d5 | ch8    |
| a14b14 | b12b13c6 | c6c7         | ch9    |
| a15b15 | b14b15   | ch0          | com0   |
| a1b1   | b14b15c7 | ch10         | com1   |
| a2b2   | b2b3     | ch11         | d0d1   |
| a3b3   | b2b3c1   | ch12         | d1d2   |
| a4b4   | b4b5     | ch13         | d2d3   |
| a5b5   | b4b5c2   | ch14         | d2d3d4 |

| a6b6 | b6b7   | ch15 | d4d5 |
|------|--------|------|------|
| a7b7 | b6b7c3 | ch1  |      |
| a8b8 | b8b9   | ch2  |      |
| a9b9 | b8b9c4 | ch3  |      |